MHB Proving $PA+PB+PC\geq MA+MB+MC$ in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
M is an inner point of acute $\triangle ABC$

$\angle AMB=\angle BMC=\angle CMA=120^ o$

point P is another point in $\triangle ABC$

Prove :$PA+PB+PC\geq MA+MB+MC$
 
Mathematics news on Phys.org
Albert said:
M is an inner point of acute $\triangle ABC$

$\angle AMB=\angle BMC=\angle CMA=120^ o$

point P is another point in $\triangle ABC$

Prove :$PA+PB+PC\geq MA+MB+MC$
Consider a slightly different question.

Fix a number $l$.
Let $L$ be the locus of all the points $Q$ such that $|QB|+|QC|=l$.
Then $L$ is an ellipse.
Suppose we want to find a point $Q^*$ on $L$ such that $|AQ^*|+|Q^*B|+|Q^*C|$ is minimum.
Imagine a circle whose center is $A$ and whose radius expands with time. At time $t=0$ assume the radius of the circle is $0$.
At some point in time, say $t=t^*$, the circle first comes in contact with the ellipse $L$. Say the radius of this circle is $r^*$ and denote this circle as $C^*$.
One can show that $C^*\cap L$ is a singleton.
Say $C^*\cap L=\{Q^*\}$.
By this construction, we can also see that $Q^*$ is the point on $L$ such that $|AQ^*|+|Q^*B|+|Q^*C|$ is smallest.
By the properties of ellipse, we can also see that $AQ^*$ bisects angle $\angle BQ^*C$.

Now to our problem. Fermat point can be shown to exist in any acute angled triangle. If $F$ is the Fermat point, then $AF$ bisects angle $\angle BFC$, $BF$ bisects angle $\angle AFC$ and $CF$ bisects angle $\angle AFB$. By the above discussion, the inequality in the original question is easily established.
 
Last edited by a moderator:
Albert said:
M is an inner point of acute $\triangle ABC$

$\angle AMB=\angle BMC=\angle CMA=120^ o$

point P is another point in $\triangle ABC$

Prove :$PA+PB+PC\geq MA+MB+MC$
 

Attachments

  • Fermat point.jpg
    Fermat point.jpg
    36.2 KB · Views: 112
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top