Proving Properties of Multiplication for Natural Numbers

Click For Summary

Discussion Overview

The discussion revolves around proving properties of multiplication for natural numbers, specifically focusing on the definitions and properties such as commutativity, associativity, and distributivity. Participants explore these properties through mathematical induction and definitions, aiming to establish various multiplication identities and relationships among natural numbers.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant defines multiplication for natural numbers and states properties to be proven, including commutativity and associativity.
  • Another participant suggests proving properties by induction, specifically mentioning the use of an inductive hypothesis for establishing commutativity.
  • Several participants demonstrate steps to prove that \(0 \cdot m = 0\) and explore the implications of this for other properties.
  • There is a discussion on the justification of certain equalities, with one participant noting that specific steps are not merely definitions but require external induction hypotheses.
  • One participant expresses uncertainty about the necessity of proving a particular addition property, suggesting that it may not be relevant to the current focus on multiplication.
  • Another participant attempts to show that \((m \cdot n) \cdot k = m \cdot (n \cdot k)\) through induction, providing specific cases to illustrate the argument.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and initial steps for proving the properties of multiplication. However, there are multiple competing views on the necessity and relevance of certain proofs, as well as the justification of specific mathematical steps. The discussion remains unresolved regarding the completeness and correctness of the proofs presented.

Contextual Notes

Participants reference external induction hypotheses and previously established properties of addition, indicating that some assumptions may be necessary for the proofs but are not fully articulated in the current discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

For each pair of natural numbers $m \in \omega, n \in \omega$ we define the multiplication between $m,n$ (as a function $\cdot: \omega \times \omega \to \omega $) like that:

$$m \cdot 0=0$$
$$m \cdot n'=m \cdot n+m$$

I want to show that for each $m \in \omega, n \in \omega, k \in \omega$ the following properties are satisfied:

  • $m \cdot n=n \cdot m$
  • $(m \cdot n) \cdot k=m \cdot (n \cdot k)$
  • $(m+n) \cdot k=m\cdot k+n \cdot k$
  • $1 \cdot n=n$
  • If $k \neq 0$ and $n \cdot k=m \cdot k$ then $n=m$.
In order to prove the first sentence we have to show that $0 \cdot m=0$, $n' \cdot m=m \cdot n'$ and that $m \cdot n=n \cdot m$, right?In order to prove that $0 \cdot m=0$ I tried the following:

For $m=0: 0 \cdot 0=0 \checkmark$

We suppose a $m$ such that $0 \cdot m=0$.

We want to show that $0 \cdot m'=0$.

$0 \cdot m'=0 \cdot m+0 \overset{\text{induction hypothesis}}{=}0$.

Therefore, $0 \cdot m=0$, for any $m \in \omega$.Then we want to show that $n' \cdot m=m \cdot n'$.

For $m=0$: $n' \cdot 0 \overset{\text{definition}}{=}0 \overset{\text{previous sentence}}{=}0 \cdot n' \checkmark$We suppose a $m$ such that $n' \cdot m=m \cdot n'$ for all $n \in \omega$.We want to show that $n' \cdot m'=m' \cdot n'$.

$n' \cdot m'=n' \cdot m+n'=m \cdot n'+n'$How could we continue? (Thinking)
 
Physics news on Phys.org
evinda said:
In order to prove the first sentence we have to show that $0 \cdot m=0$, $n' \cdot m=m \cdot n'$ and that $m \cdot n=n \cdot m$, right?
I would prove $0 \cdot m=0$ and
\[
n'm=nm+m\qquad(*)
\]
by induction on $m$. The equality (*) is used in the inductive step of proving $mn=nm$ by induction on $n$. Indeed,
\[
mn'\overset{\text{def}}{=}mn+m\overset{\text{IH}}{=}nm+m\overset{(*)}{=}n'm.
\]
 
Is it right like that?

We will show that $0 \cdot m=0$.
For $m=0: 0 \cdot 0 \overset{\text{definition}}{=}0$
We suppose a $m$ such that $0 \cdot m=0$.
We will show that $0 \cdot m'=0$.
$0 \cdot m'=0 \cdot m+0 \overset{\text{ind. hypothesis}}{=}0+0=0$
$$$$

We will prove that $m \cdot n=n \cdot m$.

For $m=0: 0 \cdot n=0=n \cdot 0 \checkmark$

We suppose a $m$ such that $\forall n \in \omega: m \cdot n=n \cdot m$.

We will show $m' \cdot n=n \cdot m', \forall n \in \omega$
.
For $n=0: m' \cdot 0 \overset{\text{definition}}{=} 0 \overset{\text{above proposition}}{=} 0 \cdot m'$

Let $n$ such that $m' \cdot n=n \cdot m'$.

We will show that $m' \cdot n'=n' \cdot m'$.

$$m' \cdot n'=m' \cdot n+m' \overset{\text{ind. hypothesis}}{=}n \cdot m'+m'=n \cdot m+n+m' \overset{\star \star }{=} n \cdot m+n'+m \\ =(n \cdot m+m)+n'=n' \cdot m+n'=n' \cdot m'$$$$\star \star: $$

We will show that $n+m'=n'+m$.

For $m=0$: $n+m'=n+0'=(n+0)'=n'=n'+0=n'+m$

Let $m$ such that $n+m'=n'+m$.

We will show that $n+m''=n'+m'$.

$n+m''=(n+m')' \overset{\text{ind. hypothesis}}{=} (n'+m)' \overset{\text{definition}}{=} n'+m'$
 
evinda said:
We will show that $m' \cdot n'=n' \cdot m'$.

$$m' \cdot n'=m' \cdot n+m' \overset{\text{ind. hypothesis}}{=}n \cdot m'+m'=n \cdot m+n+m' \overset{\star \star }{=} n \cdot m+n'+m \\ =(n \cdot m+m)+n'=n' \cdot m+n'=n' \cdot m'$$
Note that $nm+m=n'm$ (second last equality) is not an instance of definition. You could justify it as follows.
\begin{align}
nm+m&=mn+m&&\text{external induction hypothesis (on }m)\\
&=mn'&&\text{definition}\\
&=n'm&&\text{external induction hypothesis}.
\end{align}

evinda said:
We will show that $n+m'=n'+m$.
You used other properties of addition, including commutativity and associativity. It is not clear why you are proving this particular fact and not others.
 
Evgeny.Makarov said:
Note that $nm+m=n'm$ (second last equality) is not an instance of definition. You could justify it as follows.
\begin{align}
nm+m&=mn+m&&\text{external induction hypothesis (on }m)\\
&=mn'&&\text{definition}\\
&=n'm&&\text{external induction hypothesis}.
\end{align}
I see... (Nod)

Evgeny.Makarov said:
You used other properties of addition, including commutativity and associativity. It is not clear why you are proving this particular fact and not others.

I didn't prove the other properties because they are given at the proposition of my other thread about addition. (Blush) I tried to show like that that $(m \cdot n) \cdot k=m \cdot (n \cdot k)$:
For $k=0: (m \cdot n) \cdot 0 \overset{definition}{=}0=m \cdot (n \cdot 0)=m \cdot 0=0$

Let $k$ such that $(m \cdot n) \cdot k=m \cdot (n \cdot k)$.We will show that $(m \cdot n) \cdot k'=m \cdot (n \cdot k')$.

$(m \cdot n) \cdot k' \overset{definition}{=} (m \cdot n)k +(m \cdot n) \overset{ind. hypothesis}{=} m \cdot (n \cdot k)+(m \cdot n) \overset{\star}{=} m \cdot (n \cdot k+n)\\=m \cdot (n \cdot k')$$$\star:$$

We will show that $m \cdot (n \cdot k)+(m \cdot n)=m \cdot (n \cdot k+n)$For $m=0: 0 \cdot (n \cdot k)+(0 \cdot n)=0= 0 \cdot (n \cdot k+n) \checkmark$Let $m$ such that $m \cdot (n \cdot k)+(m \cdot n)=m \cdot (n \cdot k+n), \forall n,k \in \omega$

We will show that $m' \cdot (n \cdot k)+(m' \cdot n)=m' \cdot (n \cdot k+n)$$m' \cdot (n \cdot k)+(m' \cdot n)=m \cdot (n \cdot k)+(n \cdot k)+m \cdot n+n=m \cdot (n \cdot k)+m \cdot n+(n \cdot k)+n \overset{ind. hypothesis}{=} m \cdot (n \cdot k+n)+(n \cdot k)+n=m' \cdot (n \cdot k+n)$

Am I right? (Smile)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K