Proving Properties of Multiplication for Natural Numbers

Click For Summary
SUMMARY

This discussion focuses on proving properties of multiplication for natural numbers, specifically using the definitions of multiplication as a function from natural numbers to natural numbers. The properties discussed include commutativity, associativity, distributivity, and the identity property of multiplication. The proofs utilize mathematical induction and the definitions of addition and multiplication, confirming that for all natural numbers \(m, n, k\), the properties \(m \cdot n = n \cdot m\), \((m \cdot n) \cdot k = m \cdot (n \cdot k)\), \((m+n) \cdot k = m \cdot k + n \cdot k\), and \(1 \cdot n = n\) hold true.

PREREQUISITES
  • Understanding of natural numbers and their properties
  • Familiarity with mathematical induction
  • Knowledge of basic arithmetic operations: addition and multiplication
  • Concept of functions in mathematics
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore the properties of addition and multiplication in abstract algebra
  • Learn about functions and their definitions in set theory
  • Investigate the implications of commutativity and associativity in various mathematical structures
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in the foundational properties of arithmetic operations.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

For each pair of natural numbers $m \in \omega, n \in \omega$ we define the multiplication between $m,n$ (as a function $\cdot: \omega \times \omega \to \omega $) like that:

$$m \cdot 0=0$$
$$m \cdot n'=m \cdot n+m$$

I want to show that for each $m \in \omega, n \in \omega, k \in \omega$ the following properties are satisfied:

  • $m \cdot n=n \cdot m$
  • $(m \cdot n) \cdot k=m \cdot (n \cdot k)$
  • $(m+n) \cdot k=m\cdot k+n \cdot k$
  • $1 \cdot n=n$
  • If $k \neq 0$ and $n \cdot k=m \cdot k$ then $n=m$.
In order to prove the first sentence we have to show that $0 \cdot m=0$, $n' \cdot m=m \cdot n'$ and that $m \cdot n=n \cdot m$, right?In order to prove that $0 \cdot m=0$ I tried the following:

For $m=0: 0 \cdot 0=0 \checkmark$

We suppose a $m$ such that $0 \cdot m=0$.

We want to show that $0 \cdot m'=0$.

$0 \cdot m'=0 \cdot m+0 \overset{\text{induction hypothesis}}{=}0$.

Therefore, $0 \cdot m=0$, for any $m \in \omega$.Then we want to show that $n' \cdot m=m \cdot n'$.

For $m=0$: $n' \cdot 0 \overset{\text{definition}}{=}0 \overset{\text{previous sentence}}{=}0 \cdot n' \checkmark$We suppose a $m$ such that $n' \cdot m=m \cdot n'$ for all $n \in \omega$.We want to show that $n' \cdot m'=m' \cdot n'$.

$n' \cdot m'=n' \cdot m+n'=m \cdot n'+n'$How could we continue? (Thinking)
 
Physics news on Phys.org
evinda said:
In order to prove the first sentence we have to show that $0 \cdot m=0$, $n' \cdot m=m \cdot n'$ and that $m \cdot n=n \cdot m$, right?
I would prove $0 \cdot m=0$ and
\[
n'm=nm+m\qquad(*)
\]
by induction on $m$. The equality (*) is used in the inductive step of proving $mn=nm$ by induction on $n$. Indeed,
\[
mn'\overset{\text{def}}{=}mn+m\overset{\text{IH}}{=}nm+m\overset{(*)}{=}n'm.
\]
 
Is it right like that?

We will show that $0 \cdot m=0$.
For $m=0: 0 \cdot 0 \overset{\text{definition}}{=}0$
We suppose a $m$ such that $0 \cdot m=0$.
We will show that $0 \cdot m'=0$.
$0 \cdot m'=0 \cdot m+0 \overset{\text{ind. hypothesis}}{=}0+0=0$
$$$$

We will prove that $m \cdot n=n \cdot m$.

For $m=0: 0 \cdot n=0=n \cdot 0 \checkmark$

We suppose a $m$ such that $\forall n \in \omega: m \cdot n=n \cdot m$.

We will show $m' \cdot n=n \cdot m', \forall n \in \omega$
.
For $n=0: m' \cdot 0 \overset{\text{definition}}{=} 0 \overset{\text{above proposition}}{=} 0 \cdot m'$

Let $n$ such that $m' \cdot n=n \cdot m'$.

We will show that $m' \cdot n'=n' \cdot m'$.

$$m' \cdot n'=m' \cdot n+m' \overset{\text{ind. hypothesis}}{=}n \cdot m'+m'=n \cdot m+n+m' \overset{\star \star }{=} n \cdot m+n'+m \\ =(n \cdot m+m)+n'=n' \cdot m+n'=n' \cdot m'$$$$\star \star: $$

We will show that $n+m'=n'+m$.

For $m=0$: $n+m'=n+0'=(n+0)'=n'=n'+0=n'+m$

Let $m$ such that $n+m'=n'+m$.

We will show that $n+m''=n'+m'$.

$n+m''=(n+m')' \overset{\text{ind. hypothesis}}{=} (n'+m)' \overset{\text{definition}}{=} n'+m'$
 
evinda said:
We will show that $m' \cdot n'=n' \cdot m'$.

$$m' \cdot n'=m' \cdot n+m' \overset{\text{ind. hypothesis}}{=}n \cdot m'+m'=n \cdot m+n+m' \overset{\star \star }{=} n \cdot m+n'+m \\ =(n \cdot m+m)+n'=n' \cdot m+n'=n' \cdot m'$$
Note that $nm+m=n'm$ (second last equality) is not an instance of definition. You could justify it as follows.
\begin{align}
nm+m&=mn+m&&\text{external induction hypothesis (on }m)\\
&=mn'&&\text{definition}\\
&=n'm&&\text{external induction hypothesis}.
\end{align}

evinda said:
We will show that $n+m'=n'+m$.
You used other properties of addition, including commutativity and associativity. It is not clear why you are proving this particular fact and not others.
 
Evgeny.Makarov said:
Note that $nm+m=n'm$ (second last equality) is not an instance of definition. You could justify it as follows.
\begin{align}
nm+m&=mn+m&&\text{external induction hypothesis (on }m)\\
&=mn'&&\text{definition}\\
&=n'm&&\text{external induction hypothesis}.
\end{align}
I see... (Nod)

Evgeny.Makarov said:
You used other properties of addition, including commutativity and associativity. It is not clear why you are proving this particular fact and not others.

I didn't prove the other properties because they are given at the proposition of my other thread about addition. (Blush) I tried to show like that that $(m \cdot n) \cdot k=m \cdot (n \cdot k)$:
For $k=0: (m \cdot n) \cdot 0 \overset{definition}{=}0=m \cdot (n \cdot 0)=m \cdot 0=0$

Let $k$ such that $(m \cdot n) \cdot k=m \cdot (n \cdot k)$.We will show that $(m \cdot n) \cdot k'=m \cdot (n \cdot k')$.

$(m \cdot n) \cdot k' \overset{definition}{=} (m \cdot n)k +(m \cdot n) \overset{ind. hypothesis}{=} m \cdot (n \cdot k)+(m \cdot n) \overset{\star}{=} m \cdot (n \cdot k+n)\\=m \cdot (n \cdot k')$$$\star:$$

We will show that $m \cdot (n \cdot k)+(m \cdot n)=m \cdot (n \cdot k+n)$For $m=0: 0 \cdot (n \cdot k)+(0 \cdot n)=0= 0 \cdot (n \cdot k+n) \checkmark$Let $m$ such that $m \cdot (n \cdot k)+(m \cdot n)=m \cdot (n \cdot k+n), \forall n,k \in \omega$

We will show that $m' \cdot (n \cdot k)+(m' \cdot n)=m' \cdot (n \cdot k+n)$$m' \cdot (n \cdot k)+(m' \cdot n)=m \cdot (n \cdot k)+(n \cdot k)+m \cdot n+n=m \cdot (n \cdot k)+m \cdot n+(n \cdot k)+n \overset{ind. hypothesis}{=} m \cdot (n \cdot k+n)+(n \cdot k)+n=m' \cdot (n \cdot k+n)$

Am I right? (Smile)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 26 ·
Replies
26
Views
944
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K