MHB Proving Reflexive, Symmetric and Transitive Properties of Relation R on P(U)

leigh ramona
Messages
2
Reaction score
0
Let U be a universal set, and let C be any subset of U. Let R be the relation on P(U) defined by A R B if $A \cap C = B \cap C$. Determine whether the relation is reflexive, symmetric, and/or transitive. Prove you answer.
 
Last edited by a moderator:
Physics news on Phys.org
First, do you know what "reflexive", "symmetric", and "transitive" mean? Write down the definitions and show that this relation satisfies those definitions.
 
So reflexive is equal to each other. Like x R x.
Symmetric is x R y = y R x
Transitive is if x R y and y R z, then x R z.

The relation is symmetric because if A \cap C = B \cap C, then C \cap A = C \cap B. Is this correct?

The relation is also transitive, because if A \cap C and B \cap C, then A \cap B.

I'm not sure about the reflexive.
 
leigh ramona said:
So reflexive is equal to each other. Like x R x.
Your sentence does not make sense because it lacks the subject: what is equal to each other?. And when you say $xRx$, I'll ask you: what is $x$? Do you mean $xRx$ holds for some unspecified $x$, for all $x$, for some specific $x$? What set does $x$ range over?

leigh ramona said:
Symmetric is x R y = y R x
This sentence is also problematic. For each $x$ and $y$, $xRy$ is either true or false. What do you mean by $xRx=yRx$? For which $x$ and $y$?

leigh ramona said:
Transitive is if x R y and y R z, then x R z.
This would be correct if you added "for all $x$, $y$ and $z$".

leigh ramona said:
The relation is symmetric because if A \cap C = B \cap C, then C \cap A = C \cap B. Is this correct?
What you wrote is true, but what does this have to do with $R$? Please enclose formulas in dollar signs: \$A\cap C\$.

leigh ramona said:
The relation is also transitive, because if A \cap C and B \cap C, then A \cap B.
This does not makes sense because $A\cap C$ cannot be true or false: it's a set. Therefore, you can't write "If $A\cap C$...".

If you increase the level of your precision, it will help you not only to communicate more clearly, but to understand the problem and definitions better as well.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top