MHB Proving Set Equality: How to Show Subset Relationships?

  • Thread starter Thread starter Sara jj
  • Start date Start date
Click For Summary
To prove set equality, it is essential to demonstrate that two sets are subsets of each other. The intersection of a finite collection of sets can be expressed as the first set minus the union of the differences between the first set and the others. Similarly, this principle applies to an infinite collection of sets. For example, to prove that sets A and B are equal, one must establish that A is a subset of B and B is a subset of A. This method effectively confirms the equality of the two sets.
Sara jj
Messages
2
Reaction score
0
1) $\cap_{i=1}^{n} A_{i}= A_{1}\setminus \cup_{i=1}^{n}(A_{1}\setminus A_{i})$

2) $\cap_{i=1}^{\infty} A_{i}= A_{1}\setminus \cup_{i=1}^{\infty}(A_{1}\setminus A_{i})$
 
Physics news on Phys.org
You need to show that there are subsets to each other.

For example:
Let $A$ and $B$ be sets. Prove that $A=B$, ( to do that you need to show that $A \subseteq B$ and $B\subseteq A$ is true).
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K