MHB Proving: Sets Proofs - Techniques & Examples

  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Proof Sets
paulmdrdo1
Messages
382
Reaction score
0
prove the followinga. prove that if $A\cap B=\emptyset$, then $(A\times C)\cap (B\times C)=\emptyset$
b. $A\cup(B\cap C)=(A\cup B)\cap (A\cup C)$

i don't have any idea how i would start proving this.
can you give me some techniques on proofs.
 
Mathematics news on Phys.org
paulmdrdo said:
prove the followinga. prove that if $A\cap B=\emptyset$, then $(A\times C)\cap (B\times C)=\emptyset$
b. $A\cup(B\cap C)=(A\cup B)\cap (A\cup C)$

i don't have any idea how i would start proving this.
can you give me some techniques on proofs.
a. Assume on the contrary that $(x,y)\in (A\times C)\cap (B\times C)$. Thus $x\in A\cap B$ and $y\in C$ (why?). Can you finish?

b. Let $x\in A\cup(B\cap C)$. Then $x\in A$ or $x\in B\cap C$.
Case 1. $x\in A$.
Here $x\in A\cup B$ and $x\in A\cup C$. (why?). Thus $x\in (A\cup B)\cap (A\cup C)$.

Case 2. $x\in B\cap C$.
Again, Here $x\in A\cup B$ and $x\in A\cup C$. (why?). Thus $x\in (A\cup B)\cap (A\cup C)$.

The above shows that any element of $A\cup (B\cap C)$ is in $(A\cup B)\cap(A\cup C)$. This means $A\cup (B\cap C)\subseteq (A\cup B)\cap(A\cup C)$. Can you show the reverse containment and finish?
 
caffeinemachine i know nothing about formal way of proving. i can say why that is true in words or verbally but not in a generalize way. i want a formal presentation of proofs like what you are doing. can you give some tips. because every time i encounter this kind of problems i always feel discouraged.

but this is what i tried

$x\in A\cap B$ and $y\in C$ because we assume that $(x,y)\in (A\times C)\cap (B\times C) $

i don't know howfill in the other (whys)
 
paulmdrdo said:
caffeinemachine i know nothing about formal way of proving. i can say why that is true in words or verbally but not in a generalize way. i want a formal presentation of proofs like what you are doing. can you give some tips. because every time i encounter this kind of problems i always feel discouraged.

but this is what i tried

$x\in A\cap B$ and $y\in C$ because we assume that $(x,y)\in (A\times C)\cap (B\times C) $

i don't know howfill in the other (whys)
The 'second why' is quite straightforward. If you know that $x\in A$, then $x$ also lies in any superset of $A$. Isn't it? Thus $x\in A$ gives $x\in A\cup B$ since $A\cup B$ is a superset of $A$. Similarly $x\in A$ gives $A\cup C$ too.

Now try to fill in for the third why.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top