MHB Proving \sum_{r=1}^{\infty} \frac{1}{k(k+1)} = 1 Using Deduction

  • Thread starter Thread starter ChelseaL
  • Start date Start date
ChelseaL
Messages
22
Reaction score
0
Use the fact that \frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} to show that


Deduce that

\infty
sigma (\frac{1}{k(k+1)}) = 1
r=1

How do I solve this?
 
Physics news on Phys.org
Take a look at what I posted for the $n$th sum of this same series, and see if you can't change in over to an infinite sum...
 
ChelseaL said:
Use the fact that \frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} to show that


Deduce that

\infty
sigma (\frac{1}{k(k+1)}) = 1
r=1

How do I solve this?
Are you summing over r or over k? I'll assume k.

[math]\sum _{k = 1}^{\infty} \frac{1}{k(k + 1)} = \sum _{k = 1} ^{\infty} \left ( \frac{1}{k} - \frac{1}{k + 1} \right )[/math]. You can break this up into two summations and evaluate them with the known rule, or you could note that this is a telescopic series and most of the terms will cancel out.

-Dan
 
So basically they are equal?
 
I would write:

$$S_{\infty}=\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k+1}\right)=1+\sum_{k=2}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=2}^{\infty}\left(\frac{1}{k}\right)$$
 
MarkFL said:
$$S_{\infty}=\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k+1}\right)=1+\sum_{k=2}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=2}^{\infty}\left(\frac{1}{k}\right)$$
I am not sure I am familiar with the rule that allows writing $$\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k+1}\right)$$.
 
Evgeny.Makarov said:
I am not sure I am familiar with the rule that allows writing $$\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k+1}\right)$$.

Yes, that was a bad post. The OP stated an unfamiliarity with limits, so I "winged it." What I would actually do is:

$$S_{\infty}=\lim_{n\to\infty}\left(\sum_{k=1}^{n}\left(\frac{1}{k(k+1)}\right)\right)=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)=1$$
 
Evgeny.Makarov said:
I am not sure I am familiar with the rule that allows writing $$\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k+1}\right)$$.
Ah, convergence issues. (Swearing) One of my favorite topics (to ignore.)

Thanks for the catch.

-Dan
 
Back
Top