MHB Proving the Equality of A and B: A+B=0 or A=B

  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary
The discussion focuses on proving that if AA equals BB, then either A plus B equals zero or A equals B. It begins by establishing basic algebraic properties such as commutativity, associativity, and the existence of additive and multiplicative identities. The proof utilizes these properties to manipulate the equation AA=BB, ultimately leading to the conclusion that if A plus B is not zero, then A must equal B. The proof is structured logically, relying on axioms and established mathematical principles to reach the final statement. Thus, the conclusion is that the relationship between A and B is defined by either their sum being zero or them being equal.
solakis1
Messages
407
Reaction score
0
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c
 
Mathematics news on Phys.org
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

Please post the solution you have ready. :)
 
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

[sp] Proof:

1) AA=BB................Given

2) AA+AB=BB+AB..........additive property of equality

3) A(A+B)=B(B+A)............by axiom 5

4) A(A+B)=B(A+B)............by axiom 1

5) $$A+B\neq 0$$................assumption

6)$$\exists C[C(A+B)=1]$$..............by axiom 4

7) [C(A+B)]=1......................fix C

8) C[A(A+B)]= C[B(A+B)].................by the multiplicative property of equality

9) C[(A+B)A]=C[(A+B)B]..................by axiom 1

10) [C(A+B)]A= [C(A+B)]B..................by axiom 2

11) 1.A= 1.B......................by substituting 7 into 10

12) A=B........................by axiom 3

13) $$A+B\neq 0\Longrightarrow A=B$$..........Closing the assumption that we started at step 5

14) A+B=0 V A=B................This is equivalent to formula (13)Hence: If AA=BB ,then A+B=0 or A=B [/sp]
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
898
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K