MHB Proving the Equality of A and B: A+B=0 or A=B

  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary
The discussion focuses on proving that if AA equals BB, then either A plus B equals zero or A equals B. It begins by establishing basic algebraic properties such as commutativity, associativity, and the existence of additive and multiplicative identities. The proof utilizes these properties to manipulate the equation AA=BB, ultimately leading to the conclusion that if A plus B is not zero, then A must equal B. The proof is structured logically, relying on axioms and established mathematical principles to reach the final statement. Thus, the conclusion is that the relationship between A and B is defined by either their sum being zero or them being equal.
solakis1
Messages
407
Reaction score
0
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c
 
Mathematics news on Phys.org
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

Please post the solution you have ready. :)
 
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

[sp] Proof:

1) AA=BB................Given

2) AA+AB=BB+AB..........additive property of equality

3) A(A+B)=B(B+A)............by axiom 5

4) A(A+B)=B(A+B)............by axiom 1

5) $$A+B\neq 0$$................assumption

6)$$\exists C[C(A+B)=1]$$..............by axiom 4

7) [C(A+B)]=1......................fix C

8) C[A(A+B)]= C[B(A+B)].................by the multiplicative property of equality

9) C[(A+B)A]=C[(A+B)B]..................by axiom 1

10) [C(A+B)]A= [C(A+B)]B..................by axiom 2

11) 1.A= 1.B......................by substituting 7 into 10

12) A=B........................by axiom 3

13) $$A+B\neq 0\Longrightarrow A=B$$..........Closing the assumption that we started at step 5

14) A+B=0 V A=B................This is equivalent to formula (13)Hence: If AA=BB ,then A+B=0 or A=B [/sp]
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...