Proving the Equality of A and B: A+B=0 or A=B

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the equality of two variables A and B under the condition that AA equals BB, leading to the conclusion that either A + B equals 0 or A equals B. The proof utilizes fundamental axioms of algebra, including the commutative and associative properties, as well as the existence of additive and multiplicative identities. Key steps in the proof involve manipulating expressions using these axioms to arrive at the final conclusion.

PREREQUISITES
  • Understanding of algebraic properties such as commutativity and associativity.
  • Familiarity with axioms of equality and their applications in proofs.
  • Knowledge of additive and multiplicative identities in algebra.
  • Basic skills in manipulating algebraic expressions and equations.
NEXT STEPS
  • Study the properties of equality in algebraic structures.
  • Learn about the axioms of algebra and their implications in proofs.
  • Explore the concept of additive inverses and their role in equations.
  • Investigate the implications of the zero product property in algebra.
USEFUL FOR

Mathematicians, algebra students, and anyone interested in formal proofs and the foundational properties of algebraic structures.

solakis1
Messages
407
Reaction score
0
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c
 
Physics news on Phys.org
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

Please post the solution you have ready. :)
 
solakis said:
Given for all A,B,C...

1) A+B=B+A......AB=BA

2) A+(B+C)=(A+B)+C.......A(BC)=(AB)C

3) A+0=A..........1A=A

4) $$\forall A\exists B(A+B=0)$$.....$$\forall A(\neg(A=0)\Longrightarrow\exists B(AB=1))$$

5) A(B+C)= AB+AC

Then prove: $$AA=BB\Longrightarrow (A+B)=0\vee A=B$$

Note: AB means A.B ...e.t.c ,e.t.c

[sp] Proof:

1) AA=BB................Given

2) AA+AB=BB+AB..........additive property of equality

3) A(A+B)=B(B+A)............by axiom 5

4) A(A+B)=B(A+B)............by axiom 1

5) $$A+B\neq 0$$................assumption

6)$$\exists C[C(A+B)=1]$$..............by axiom 4

7) [C(A+B)]=1......................fix C

8) C[A(A+B)]= C[B(A+B)].................by the multiplicative property of equality

9) C[(A+B)A]=C[(A+B)B]..................by axiom 1

10) [C(A+B)]A= [C(A+B)]B..................by axiom 2

11) 1.A= 1.B......................by substituting 7 into 10

12) A=B........................by axiom 3

13) $$A+B\neq 0\Longrightarrow A=B$$..........Closing the assumption that we started at step 5

14) A+B=0 V A=B................This is equivalent to formula (13)Hence: If AA=BB ,then A+B=0 or A=B [/sp]
 
Last edited:

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K