MHB Proving the Integer Property of a Fraction Using Mathematical Induction

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Induction Proof
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
On another forum the following problem was posted:

"Prove with mathematical induction that

$\displaystyle \frac{(n+1)(n+2)...(2n)}{2^n}$

is an integer when $\displaystyle n\in\mathbb{N}$

My solution:

I chose to write the induction hypothesis $\displaystyle P_n$ after looking at the first several statements:

$\displaystyle \frac{(2n)!}{n!}=(2n-1)!2^n$

We easily see that $\displaystyle P_1$ is true, so next I defined:

$\displaystyle \mu(n)=\frac{(2(n+1))!}{(n+1)!}-\frac{(2n)!}{n!}=\frac{(2(n+1))!-(n+1)(2n)!}{(n+1)!}=\frac{(2n)!((2n+2)(2n+1)-(n+1))}{(n+1)!}=$

$\displaystyle \frac{(2n)!}{n!}(2(2n+1)-1)=\frac{(2n)!}{n!}(4n+1)=(2n-1)!2^n(4n+1)$

Now, adding $\displaystyle \mu(n)$ to both sides of $\displaystyle P_n$ there results:

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n+(2n-1)!2^n(4n+1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n(4n+2)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^{n+1}(2(n+1)-1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2(n+1)-1)!2^{n+1}$

We have derived $\displaystyle P_{n+1}$ from $\displaystyle P_n$ thereby completing the proof by induction.
 
Mathematics news on Phys.org
Hi everyone, :)

Here's how I would do this problem. Let,

\[P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\]

We have to show that \(P_{n}\) is an integer for each \(n\in\mathbb{N}=\mathbb{Z}^{+}\cup\{0\}\).

\(P_0=1\) and therefore the statement is true for \(n=0\). Let us assume that the statement is true for \(n=p\in\mathbb{N}\). Then,

\[P_{p}=\frac{(2p)!}{2^{p}p!}\in\mathbb{N}\]

Now,

\begin{eqnarray}

P_{p+1}&=&\frac{(2p+2)!}{2^{p+1}(p+1)!}\\

&=&\frac{(2p)!}{2^{p}p!}\frac{(2p+2)(2p+1)}{2(p+1)}\\

&=&P_{p}(2p+1)\in\mathbb{N}

\end{eqnarray}

Hence the result is true for \(n=p+1\).

\[\therefore P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\in\mathbb{N}\mbox{ for each }n\in\mathbb{N}\]

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top