MHB Proving the Integer Property of a Fraction Using Mathematical Induction

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
The discussion focuses on proving that the expression (n+1)(n+2)...(2n)/2^n is an integer for natural numbers n using mathematical induction. The initial step confirms that the base case P_1 holds true. The induction hypothesis is established, and the proof progresses by demonstrating that if P_p is true, then P_{p+1} also holds. The final derivation shows that the expression can be simplified to confirm its integrality for all n in the natural numbers. The proof is successfully completed, affirming the integer property of the fraction.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
On another forum the following problem was posted:

"Prove with mathematical induction that

$\displaystyle \frac{(n+1)(n+2)...(2n)}{2^n}$

is an integer when $\displaystyle n\in\mathbb{N}$

My solution:

I chose to write the induction hypothesis $\displaystyle P_n$ after looking at the first several statements:

$\displaystyle \frac{(2n)!}{n!}=(2n-1)!2^n$

We easily see that $\displaystyle P_1$ is true, so next I defined:

$\displaystyle \mu(n)=\frac{(2(n+1))!}{(n+1)!}-\frac{(2n)!}{n!}=\frac{(2(n+1))!-(n+1)(2n)!}{(n+1)!}=\frac{(2n)!((2n+2)(2n+1)-(n+1))}{(n+1)!}=$

$\displaystyle \frac{(2n)!}{n!}(2(2n+1)-1)=\frac{(2n)!}{n!}(4n+1)=(2n-1)!2^n(4n+1)$

Now, adding $\displaystyle \mu(n)$ to both sides of $\displaystyle P_n$ there results:

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n+(2n-1)!2^n(4n+1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n(4n+2)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^{n+1}(2(n+1)-1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2(n+1)-1)!2^{n+1}$

We have derived $\displaystyle P_{n+1}$ from $\displaystyle P_n$ thereby completing the proof by induction.
 
Mathematics news on Phys.org
Hi everyone, :)

Here's how I would do this problem. Let,

\[P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\]

We have to show that \(P_{n}\) is an integer for each \(n\in\mathbb{N}=\mathbb{Z}^{+}\cup\{0\}\).

\(P_0=1\) and therefore the statement is true for \(n=0\). Let us assume that the statement is true for \(n=p\in\mathbb{N}\). Then,

\[P_{p}=\frac{(2p)!}{2^{p}p!}\in\mathbb{N}\]

Now,

\begin{eqnarray}

P_{p+1}&=&\frac{(2p+2)!}{2^{p+1}(p+1)!}\\

&=&\frac{(2p)!}{2^{p}p!}\frac{(2p+2)(2p+1)}{2(p+1)}\\

&=&P_{p}(2p+1)\in\mathbb{N}

\end{eqnarray}

Hence the result is true for \(n=p+1\).

\[\therefore P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\in\mathbb{N}\mbox{ for each }n\in\mathbb{N}\]

Kind Regards,
Sudharaka.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K