Proving the Integer Property of a Fraction Using Mathematical Induction

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
SUMMARY

The discussion centers on proving that the expression $\displaystyle \frac{(n+1)(n+2)...(2n)}{2^n}$ is an integer for all natural numbers $n$ using mathematical induction. The proof begins with the base case $P_0=1$, confirming the statement is true for $n=0$. The induction hypothesis assumes the statement holds for $n=p$, leading to the conclusion that it also holds for $n=p+1$, thus completing the proof. The final result is expressed as $\displaystyle P_{n}=\frac{(2n)!}{2^{n}n!}\in\mathbb{N}$ for all $n\in\mathbb{N}$.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with factorial notation and properties
  • Basic knowledge of natural numbers and their properties
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore advanced factorial properties and their applications
  • Learn about combinatorial proofs and their relationship to induction
  • Investigate other integer properties of sequences and series
USEFUL FOR

Mathematicians, educators, students studying discrete mathematics, and anyone interested in proofs involving mathematical induction.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
On another forum the following problem was posted:

"Prove with mathematical induction that

$\displaystyle \frac{(n+1)(n+2)...(2n)}{2^n}$

is an integer when $\displaystyle n\in\mathbb{N}$

My solution:

I chose to write the induction hypothesis $\displaystyle P_n$ after looking at the first several statements:

$\displaystyle \frac{(2n)!}{n!}=(2n-1)!2^n$

We easily see that $\displaystyle P_1$ is true, so next I defined:

$\displaystyle \mu(n)=\frac{(2(n+1))!}{(n+1)!}-\frac{(2n)!}{n!}=\frac{(2(n+1))!-(n+1)(2n)!}{(n+1)!}=\frac{(2n)!((2n+2)(2n+1)-(n+1))}{(n+1)!}=$

$\displaystyle \frac{(2n)!}{n!}(2(2n+1)-1)=\frac{(2n)!}{n!}(4n+1)=(2n-1)!2^n(4n+1)$

Now, adding $\displaystyle \mu(n)$ to both sides of $\displaystyle P_n$ there results:

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n+(2n-1)!2^n(4n+1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^n(4n+2)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2n-1)!2^{n+1}(2(n+1)-1)$

$\displaystyle \frac{(2(n+1))!}{(n+1)!}=(2(n+1)-1)!2^{n+1}$

We have derived $\displaystyle P_{n+1}$ from $\displaystyle P_n$ thereby completing the proof by induction.
 
Mathematics news on Phys.org
Hi everyone, :)

Here's how I would do this problem. Let,

\[P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\]

We have to show that \(P_{n}\) is an integer for each \(n\in\mathbb{N}=\mathbb{Z}^{+}\cup\{0\}\).

\(P_0=1\) and therefore the statement is true for \(n=0\). Let us assume that the statement is true for \(n=p\in\mathbb{N}\). Then,

\[P_{p}=\frac{(2p)!}{2^{p}p!}\in\mathbb{N}\]

Now,

\begin{eqnarray}

P_{p+1}&=&\frac{(2p+2)!}{2^{p+1}(p+1)!}\\

&=&\frac{(2p)!}{2^{p}p!}\frac{(2p+2)(2p+1)}{2(p+1)}\\

&=&P_{p}(2p+1)\in\mathbb{N}

\end{eqnarray}

Hence the result is true for \(n=p+1\).

\[\therefore P_{n}=\frac{(n+1)(n+2)...(2n)}{2^n}=\frac{(2n)!}{2^{n}n!}\in\mathbb{N}\mbox{ for each }n\in\mathbb{N}\]

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K