Proving the Similarity of Two Acute Triangles with Perpendicular Lines

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Geometry
Click For Summary
SUMMARY

The discussion focuses on proving the similarity of two acute triangles, specifically triangle $ABC$ and triangle $AEF$, under certain conditions. Given points $D$, $E$, and $F$ on sides $\overline{BC}$, $\overline{AC}$, and $\overline{AB}$ respectively, with perpendicular lines $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AC}$, and $\overline{DF} \perp \overline{AB}$, it is established that $\triangle ABC \sim \triangle AEF$. Additionally, it is proven that the line segment $\overline{AO}$, where $O$ is the circumcenter of triangle $ABC$, is perpendicular to line segment $\overline{EF}$.

PREREQUISITES
  • Understanding of acute triangles and their properties
  • Knowledge of circumcenters in triangle geometry
  • Familiarity with perpendicular lines and their implications in triangle similarity
  • Basic principles of triangle similarity criteria
NEXT STEPS
  • Study the properties of circumcenters in acute triangles
  • Explore the criteria for triangle similarity, particularly in acute triangles
  • Learn about the implications of perpendicular lines in triangle geometry
  • Investigate the relationships between angles and sides in similar triangles
USEFUL FOR

Mathematicians, geometry students, and educators interested in advanced triangle properties and similarity proofs.

Albert1
Messages
1,221
Reaction score
0
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
 
Mathematics news on Phys.org
Albert said:
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
hint:
(1) prove $\angle AEF=\angle B$
(2) Prove $\angle BAO+\angle AFE=90^o$
 
Albert said:
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
solution :
The tags of all the related angles are maked with ,hope you can figure them out

View attachment 6558
 

Attachments

  • ABC similar to AEF.jpg
    ABC similar to AEF.jpg
    37.1 KB · Views: 125
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K