MHB Proving the Similarity of Two Acute Triangles with Perpendicular Lines

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Geometry
Albert1
Messages
1,221
Reaction score
0
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
 
Mathematics news on Phys.org
Albert said:
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
hint:
(1) prove $\angle AEF=\angle B$
(2) Prove $\angle BAO+\angle AFE=90^o$
 
Albert said:
Acute triangle $ABC$,3 points $D,E,F $ are on $\overline{BC},\overline{AC},\overline{AB}$
respectively ,
if $\overline{AD}\perp \overline{BC} ,\overline{DE}\perp \overline {AC} $ and $\overline{DF}\perp \overline {AB}$
prove :
(1)$\triangle ABC \sim \triangle AEF$
(2) $\overline{AO}\perp \overline {EF} $
(hrere $O$ is the circumcenter of $\triangle ABC$)
solution :
The tags of all the related angles are maked with ,hope you can figure them out

View attachment 6558
 

Attachments

  • ABC similar to AEF.jpg
    ABC similar to AEF.jpg
    37.1 KB · Views: 105
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
11
Views
6K
Back
Top