MHB Proving the Solution of a Recurrence Relation Using Induction

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion focuses on proving the solution of the recurrence relation defined by X(1)=1 and X(n)=∑(i=1 to n-1)X(i)X(n-i) for n>1, with the proposed solution X(n+1)=1/(n+1) * C(2n, n). The user has successfully verified the base case and made an induction assumption for k values up to n. They are now attempting to show the case for n+1, involving complex summations and factorials. The user is considering whether to apply combinatorial formulas, specifically C(2n, n)=∑(k=0 to n)C(n, m)^2, to help in their proof. The discussion highlights the challenges in continuing the proof and the potential need for combinatorial insights.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to show that the solution of the recurrence $$X(1)=1, X(n)=\sum_{i=1}^{n-1}X(i)X(n-i), \text{ for } n>1$$
is $$X(n+1)=\frac{1}{n+1} \binom{2n}{n}$$

I used induction to show that.

I have done the following:

For $n=0$ : $X(1)=1 \checkmark $

We assume that it stands for each $1 \leq k \leq n$:
$$X(k)=\frac{1}{k}\binom{2(k-1)}{k-1} \ \ \ \ \ (*)$$

We want to show that it stands for $n+1$:

$$X(n+1)=\sum_{i=1}^{n} X(i)X(n+1-i)=\sum_{i=1}^{n} \frac{1}{i}\binom{2(i-1)}{i-1}\frac{1}{n+1-i}\binom{2(n-i)}{n-i}=\sum_{i=1}^{n}\frac{1}{i}\frac{(2(i-1))!}{(i-1)!(2(i-1)-(i-1))!}\frac{1}{n+1-i}\binom{(2(n-i))!}{(n-1)!(2(n-i)-(n-i))!}=\sum_{i=1}^{n}\frac{(2(i-1))!}{i!(i-1)!}\frac{(2(n-i))!}{(n-i+1)!(n-i)!}$$

How could I continue?? (Wondering)
 
Physics news on Phys.org
Do we have to use maybe a formula from combinatorics, for example $$\binom{2n}{n}=\sum_{k=0}^{n}\binom{n}{m}^2$$ ?? (Wondering)
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
3K
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K