I Quantum Negativity & 4-Partite Entanglement of GHZ State

  • I
  • Thread starter Thread starter Jufa
  • Start date Start date
  • Tags Tags
    Quantum
Jufa
Messages
101
Reaction score
15
TL;DR Summary
Problem quantifying the negativity of a 4-qubit GHZ state
When I computes the negativity (with the partial transpose) of the density matrix corresponding to the GHZ I obtain zero, no matter what is the partition I choose. I've read somewhere that this is because GHZ's distillable entanglement is zero, which I don't really understand because I haven't found a definition of this sort of entanglement.
I think that the reason that all the possible negativities give zero it is because the entanglement of the GHZ is solely when one considers the whole system (full 4-partite entanglement)
My question is (also if someone could explain what the distillable entanglement is): Is there a quantity I can compute on this GHZ state (and if possible on any 4-qubit state) that measures its amount of "full 4-partite entanglement"?
Thanks in advance.
 
Physics news on Phys.org
May be it is a good idea to give a little bit of context of the problem I am facing.
In few words, I am trying to reconstruct a GHZ state of 4-qbits by means of different tomography methods and, apart from computing the fidelities of the obtained estimators, I am really interested in seeing how these methods estimate the amount of entanglement.
But in order to do so I need a measure of the entangle that does not vanish for the GHZ just as negativity does (which really shocks me, because the GHZ is maximally entangled).
That's why I am asking for both a valid entanglement measure for my case of study and (may be just for curiosity) the reason why the negativity displays this behavior on the GHZ?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top