Question 29- How to conclude the following proof.

  • Context: MHB 
  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
SUMMARY

The proof that the square of every odd integer is one more than an integral multiple of 4 is established by expressing an odd integer as \( n = 2l + 1 \). Squaring this expression yields \( n^2 = (2l + 1)^2 = 4l^2 + 4l + 1 = 4k + 1 \), where \( k = l^2 + l \). This confirms that \( n^2 \) is indeed one more than an integral multiple of 4. The discussion highlights the importance of correctly formulating the proof without assuming the conclusion within the proof itself.

PREREQUISITES
  • Understanding of basic algebraic manipulation
  • Familiarity with odd and even integers
  • Knowledge of mathematical proof techniques
  • Basic comprehension of integer properties
NEXT STEPS
  • Study the properties of odd and even integers in depth
  • Learn about mathematical induction as a proof technique
  • Explore examples of algebraic proofs in number theory
  • Investigate the implications of modular arithmetic in proofs
USEFUL FOR

Mathematics students, educators, and anyone interested in number theory or mathematical proofs will benefit from this discussion.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.

Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.

Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
Then, $(2l+1)^2=1+4k$
$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...

Thanks for the Help,
CBarker1
 
Mathematics news on Phys.org
If $n$ is an odd integer then it is of the form $2k-1$. Squaring, we find $(2k-1)^2=4k^2-4k+1=4(k^2-k)+1$ hence $n^2$ is one more than an integral multiple of $4$.
 
Cbarker1 said:
Dear Everyone,
I have trouble writing the conclusion of the proof.
29. The square of every odd integer is one more than an integral multiple of 4.
Work:
Let $n\in\Bbb{Z}$
If n is odd, then $n^2=1+4k$ for some $k\in\Bbb{Z}$.

Examples
Let n=3. Then k=2.
Let n=5. Then k=6.
Let n=21. Then k=110.

Proof:
Suppose n is odd. Then $n=1+4l$ for some $l\in\Bbb{Z}$.
No. This is not true for n= 3 or 7 or 11, etc. What is true that $n= 1+ 2l$.

Then, $(2l+1)^2=1+4k$
Okay, so the "4" before was a typo. Now, this is what you want to prove.

$4l^2+4l+1=1+4k$
$4(l^2+l)+1=1+4k$
Since $4(l^2+l)\in\Bbb{Z}$. Then...

Thanks for the Help,
CBarker1
Not quite a valid proof because in stating "$(2l+ 1)^2= 4k+ 1$" you are assuming what you want to prove.

Instead, starting with n is odd, so $n= 2l+ 1$, we have $n^2= (2l+ 1)^2= 4l^2+ 4l+ 1= 4(l^2+ l)+ 1= 4k+ 1$ where $k= l^2+ l$.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K