A Question about an equation from anapole measurement paper

  • Thread starter Thread starter BillKet
  • Start date Start date
  • Tags Tags
    Measurement Paper
Click For Summary
The discussion centers on the treatment of hyperfine and spin-rotational terms in a specific anapole measurement paper, particularly questioning the perturbative approach to the term c(I·n)(S·n). The user initially believes that the matrix element <ψ_-|cI_zY_1^0S_-Y_1^1|ψ_+> does not vanish, which would complicate perturbation theory. However, they later realize that this term must be zero due to parity considerations, as it connects states of opposite parity. They seek clarification on why their calculations suggest otherwise, indicating a potential misunderstanding in the mathematical treatment. The inquiry highlights the complexities of perturbation theory in quantum mechanics and the importance of parity in matrix element evaluations.
BillKet
Messages
311
Reaction score
30
Hello! I have a question about this paper. They claim that the hyperfine and spin-rotational terms can be treated perturbatively (they do perform a full diagonalization, too, but they claim that perturbation theory is good to get an estimate of the effect). I agree with that for most of the terms, except for ##c(I\cdot n)(S\cdot n)##. For example, let's assume we use as the level crossing the states (using the notation in order N, S, I):

$$\psi_+ = |0,0>|1/2,1/2>|1/2,1/2>$$
and
$$\psi_- = |1,1>|1/2,-1/2>|1/2,1/2>$$

The operator ##c(I\cdot n)(S\cdot n)## can be expanded (I will ignore some constants, I will write just the operators) as ##c(I_zY_1^0+I_+Y_1^{-1}+I_-Y_1^1)(S_zY_1^0+S_+Y_1^{-1}+S_-Y_1^1)## and among these, the term ##cI_zY_1^0S_-Y_1^1## doesn't seem to vanish when calculated between ##\psi_+## and ##\psi_-## i.e.

$$<\psi_-|cI_zY_1^0S_-Y_1^1|\psi_+> \neq 0$$
which is about equal to c. But when doing perturbation theory, the effect of this term would be about ##\frac{c}{E_+-E_-}## and while c is very small, ##E_+-E_-## is much smaller (ideally as small as the parity violation effect), so I don't see how this can be treated pertubatively. Am I missing something? Is that matrix element actually vanishing? Thank you!
 
Physics news on Phys.org
BillKet said:
Hello! I have a question about this paper. They claim that the hyperfine and spin-rotational terms can be treated perturbatively (they do perform a full diagonalization, too, but they claim that perturbation theory is good to get an estimate of the effect). I agree with that for most of the terms, except for ##c(I\cdot n)(S\cdot n)##. For example, let's assume we use as the level crossing the states (using the notation in order N, S, I):

$$\psi_+ = |0,0>|1/2,1/2>|1/2,1/2>$$
and
$$\psi_- = |1,1>|1/2,-1/2>|1/2,1/2>$$

The operator ##c(I\cdot n)(S\cdot n)## can be expanded (I will ignore some constants, I will write just the operators) as ##c(I_zY_1^0+I_+Y_1^{-1}+I_-Y_1^1)(S_zY_1^0+S_+Y_1^{-1}+S_-Y_1^1)## and among these, the term ##cI_zY_1^0S_-Y_1^1## doesn't seem to vanish when calculated between ##\psi_+## and ##\psi_-## i.e.

$$<\psi_-|cI_zY_1^0S_-Y_1^1|\psi_+> \neq 0$$
which is about equal to c. But when doing perturbation theory, the effect of this term would be about ##\frac{c}{E_+-E_-}## and while c is very small, ##E_+-E_-## is much smaller (ideally as small as the parity violation effect), so I don't see how this can be treated pertubatively. Am I missing something? Is that matrix element actually vanishing? Thank you!
I realized I am dumb, of course that term has to be zero, as it would otherwise connect 2 terms of opposite parity. But I would appreciate if someone can help me figure out why does the math looks like it is not zero?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K