Graduate Question about commutator involving fermions and Pauli matrices

Click For Summary
The discussion centers on the commutation relation involving fermions and Pauli matrices, specifically whether the expression [\bar{\lambda}_A \sigma^i \lambda_A, \bar{\lambda_B} \sigma^j \lambda_B] equals zero or results in a term involving the Levi-Civita symbol. The argument presented suggests that since \bar{\lambda}_A \sigma^i \lambda_A is a sum that results in a bosonic quantity, the commutator should indeed be zero. However, the opposing view implies that the calculation could yield a non-zero result based on the properties of fermionic operators. The discussion emphasizes the need to perform the calculation using specific identities related to commutators and anticommutators. Ultimately, the resolution hinges on the correct application of these mathematical identities.
Gleeson
Messages
30
Reaction score
4
Suppose ##\lambda_A## and ##\bar{\lambda}_A## are fermions (A goes from 1 to N) and ##\{ \lambda_{A \alpha}, \bar{\lambda}_B^{\beta}\} = \delta_{AB}\delta_{\alpha}^{\beta}##.

Let ##\sigma^i## denote the Pauli matrices.

Does it follow that ##[\bar{\lambda}_A \sigma^i \lambda_A, \bar{\lambda_B} \sigma^j \lambda_B] = 0##? Or should it be ##2i \epsilon_{ijk}\bar{\lambda}_C \sigma^k \lambda_C##?

I think it should be the former. ##\bar{\lambda_A} \sigma^i \lambda_A## is a sum over A of a (2 entry row, times a 2x2 matrix, times a 2 entry column), and so is no longer a matrix. And overall it is bosonic. So I think the commutator should be zero. If this is not the case, then why not?

In case it is not clear, ##\bar{\lambda}_A \sigma^i \lambda_A = \bar{\lambda}_A^{\alpha}\sigma^{i \beta}_{\alpha}\lambda_{A \beta}##. Repeated indices are summed.
 
Last edited:
Physics news on Phys.org
Just do the calculation! You only have to repeatedly use the identities,
$$[\hat{A} \hat{B},\hat{C}]=\hat{A} \{\hat{B},\hat{C} \} - \{\hat{A},\hat{C} \} \hat{B}$$
and
$$[\hat{A},\hat{B} \hat{C}]=\hat{B} \{\hat{A},\hat{C} \} - \{\hat{A},\hat{B}\} \hat{C}.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
8K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
Replies
1
Views
1K
  • · Replies 80 ·
3
Replies
80
Views
12K