A Question about commutator involving fermions and Pauli matrices

Gleeson
Messages
30
Reaction score
4
Suppose ##\lambda_A## and ##\bar{\lambda}_A## are fermions (A goes from 1 to N) and ##\{ \lambda_{A \alpha}, \bar{\lambda}_B^{\beta}\} = \delta_{AB}\delta_{\alpha}^{\beta}##.

Let ##\sigma^i## denote the Pauli matrices.

Does it follow that ##[\bar{\lambda}_A \sigma^i \lambda_A, \bar{\lambda_B} \sigma^j \lambda_B] = 0##? Or should it be ##2i \epsilon_{ijk}\bar{\lambda}_C \sigma^k \lambda_C##?

I think it should be the former. ##\bar{\lambda_A} \sigma^i \lambda_A## is a sum over A of a (2 entry row, times a 2x2 matrix, times a 2 entry column), and so is no longer a matrix. And overall it is bosonic. So I think the commutator should be zero. If this is not the case, then why not?

In case it is not clear, ##\bar{\lambda}_A \sigma^i \lambda_A = \bar{\lambda}_A^{\alpha}\sigma^{i \beta}_{\alpha}\lambda_{A \beta}##. Repeated indices are summed.
 
Last edited:
Physics news on Phys.org
Just do the calculation! You only have to repeatedly use the identities,
$$[\hat{A} \hat{B},\hat{C}]=\hat{A} \{\hat{B},\hat{C} \} - \{\hat{A},\hat{C} \} \hat{B}$$
and
$$[\hat{A},\hat{B} \hat{C}]=\hat{B} \{\hat{A},\hat{C} \} - \{\hat{A},\hat{B}\} \hat{C}.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top