Question about set containing subsequential limits of bounded sequence

Click For Summary
SUMMARY

The discussion centers on the properties of the set of subsequential limits, denoted as ##E##, of a bounded sequence ##\{x_n\}_{n\in\mathbb{N}}##. It is established that if ##E## is non-empty, then it is bounded and contains both its supremum and infimum. The proof involves demonstrating that if the supremum ##x## of ##E## is not an accumulation point, it leads to a contradiction, confirming that ##x## must belong to ##E##. The analysis also clarifies the necessity of constructing sequences converging to ##x## and the implications of finite sets lacking accumulation points.

PREREQUISITES
  • Understanding of subsequences and convergence in real analysis.
  • Familiarity with the concepts of supremum and infimum in set theory.
  • Knowledge of bounded sequences and accumulation points.
  • Basic principles of mathematical proof techniques, particularly contradiction.
NEXT STEPS
  • Study the properties of bounded sequences in real analysis.
  • Learn about the Bolzano-Weierstrass theorem regarding accumulation points.
  • Explore the concept of limits and subsequential limits in more depth.
  • Investigate the implications of finite versus infinite sets in topology.
USEFUL FOR

Mathematics students, particularly those studying real analysis, as well as educators and researchers interested in the properties of sequences and their limits.

Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Let ##\{x_n\}_{n\in\mathbb{N}}## be a bounded sequence and let ##E## be the set of subsequential limits of that sequence. Assume that ##E## is non-empty. Prove that ##E## is bounded and contains both its supremum and its infimum.
Let ##L\in E##. By definition, there is a subsequence ##\{x_{n_k}\}_{k\in\mathbb{N}}## that converges to ##L##. There is a natural number ##N## s.t. if ##n_k\geq N##, ##L\in(x_{n_k}-1,x_{n_k}+1)\subset(\inf\{x_n\}-1,\sup\{x_n\}+1)##. Hence, ##E## is a bounded set.

If ##E## is a finite set, then it has no accumulation points, which means that it must contain both its infimum and supremum.

Now assume otherwise.

Denote ##x=\sup E##, and denote the subsequence of ##\{x_n\}## converging to ##x## as ##\{x_{m_k}\}_{k\in\mathbb{N}}##.

Let ##\epsilon>0##. There is ##N\in\mathbb{N}## s.t. for integers ##n> N##, ##x-L_n<\epsilon##.

If the set ##\{x_n\}\cap(x-L_N,x)## is finite, then each point ##L_n## in the set could not be an accumulation point. For each ##n>N##, simply choose ##\delta=L_n-L_N##; any ball of radius ##\delta## centered at ##L_n## would contain only finitely many points ##x_n##. It follows that each point ##L_n## must be converged onto point-wise. However, as there are only finitely many points ##x_n\in(x-L_N,x)##, and infinitely many subsequential limits ##L_n\in(x-L_N,x)##, this is impossible.

Therefore, there infinitely many points of ##\{x_n\}## in the interval ##(x-L_N,x)##. Consequently, there must exist a subsequence of ##\{x_n\}## that converges to ##x##. By definition, ##x\in E##.
 
Physics news on Phys.org
Eclair_de_XII said:
Summary:: Let ##\{x_n\}_{n\in\mathbb{N}}## be a bounded sequence and let ##E## be the set of subsequential limits of that sequence. Assume that ##E## is non-empty. Prove that ##E## is bounded and contains both its supremum and its infimum.

Let ##L\in E##. By definition, there is a subsequence ##\{x_{n_k}\}_{k\in\mathbb{N}}## that converges to ##L##. There is a natural number ##N## s.t. if ##n_k\geq N##, ##L\in(x_{n_k}-1,x_{n_k}+1)\subset(\inf\{x_n\}-1,\sup\{x_n\}+1)##. Hence, ##E## is a bounded set.

If ##E## is a finite set, then it has no accumulation points, which means that it must contain both its infimum and supremum.

Now assume otherwise.

Denote ##x=\sup E##, and denote the subsequence of ##\{x_n\}## converging to ##x## as ##\{x_{m_k}\}_{k\in\mathbb{N}}##.

Why does ##\{x_{m_k}\}_{k\in\mathbb{N}}## exist? You use ##x\in E## to show that ##x=\sup E \in E##!
You have to a) find a sequence ##(y_k)_{k\in \mathbb{N}}## in ##E## that converges to ##x,## because all you know is that ##x## is the lowest upper bound for ##E##. Where do you get a sequence from? Then b) consider all subsequences of ##(x_n)_{n\in \mathbb{N}}## which converge to the elements ##y_k##.

Eclair_de_XII said:
Let ##\epsilon>0##. There is ##N\in\mathbb{N}## s.t. for integers ##n> N##, ##x-L_n<\epsilon##.

If the set ##\{x_n\}\cap(x-L_N,x)## is finite, then each point ##L_n## in the set could not be an accumulation point. For each ##n>N##, simply choose ##\delta=L_n-L_N##; any ball of radius ##\delta## centered at ##L_n## would contain only finitely many points ##x_n##. It follows that each point ##L_n## must be converged onto point-wise. However, as there are only finitely many points ##x_n\in(x-L_N,x)##, and infinitely many subsequential limits ##L_n\in(x-L_N,x)##, this is impossible.

Therefore, there infinitely many points of ##\{x_n\}## in the interval ##(x-L_N,x)##. Consequently, there must exist a subsequence of ##\{x_n\}## that converges to ##x##. By definition, ##x\in E##.
 
fresh_42 said:
Where do you get a sequence from?
The fact that ##x## is an accumulation point of ##E##. I reasoned that there must exist infinitely many subsequential limits within a given neighborhood of ##x##, which I erroneously denoted as ##x_n## instead of ##L_n##; also, this sequence ##\{L_n\}## would converge to ##x##, which I used in my explanation of why there must exist infinitely many points of ##\{x_n\}## in that open interval ##(x-L_N,x)##.
 
Eclair_de_XII said:
The fact that ##x## is an accumulation point of ##E##.
Why? If ##E=\{1/n\, : \,n\in \mathbb{N}\}## then ##\sup E =1## but it is no accumulation point.
Eclair_de_XII said:
I reasoned that there must exist infinitely many subsequential limits within a given neighborhood of ##x##, which I erroneously denoted as ##x_n## instead of ##L_n##; also, this sequence ##\{L_n\}## would converge to ##x##, which I used in my explanation of why there must exist infinitely many points of ##\{x_n\}## in that open interval ##(x-L_N,x)##.
 
fresh_42 said:
Why?
Let's say we have a bounded set ##E##. Its supremum ##x## must either belong to the set or be an accumulation point thereof.

If it is not the former, then let ##\epsilon>0##. There is a point ##e_1\in E## s.t. ##e_1\in(x-\epsilon,x)##. Otherwise, ##x-\epsilon## is an upper bound of ##E##, contradictory to the definition of ##x##. For similar reasons, there is a point ##e_2\in E## s.t. ##e_2\in (e_1,x)##. We construct a sequence ##\{e_n\}_{n\in\mathbb{N}}## that converges to ##x## this way. Hence, ##x## must be an accumulation point of ##E##.

Now suppose it is not the latter. Then there is a number ##\epsilon>0## s.t. ##|(x-\epsilon,x]\cap E|<\infty##. If ##x\notin E##, then we can find an open ball around ##x## that contains no elements of ##E##. But this would mean that the left end-point is an upper-bound for ##E##, which is not possible. Hence, ##x\in E##.

In the second line, I considered the case where ##x## is not an accumulation point of ##E##. Now, I'm considering the other case.
 
Eclair_de_XII said:
Let's say we have a bounded set ##E##. Its supremum ##x## must either belong to the set or be an accumulation point thereof.

If it is not the former, then let ##\epsilon>0##. There is a point ##e_1\in E## s.t. ##e_1\in(x-\epsilon,x)##. Otherwise, ##x-\epsilon## is an upper bound of ##E##, contradictory to the definition of ##x##. For similar reasons, there is a point ##e_2\in E## s.t. ##e_2\in (e_1,x)##. We construct a sequence ##\{e_n\}_{n\in\mathbb{N}}## that converges to ##x## this way. Hence, ##x## must be an accumulation point of ##E##.

Now suppose it is not the latter. Then there is a number ##\epsilon>0## s.t. ##|(x-\epsilon,x]\cap E|<\infty##. If ##x\notin E##, then we can find an open ball around ##x## that contains no elements of ##E##. But this would mean that the left end-point is an upper-bound for ##E##, which is not possible. Hence, ##x\in E##.

In the second line, I considered the case where ##x## is not an accumulation point of ##E##. Now, I'm considering the other case.
This sounds better. Always take one step after the other. It doesn't matter whether ##E## is finite or not.

You have already shown that ##E## is bounded (by choosing ##\varepsilon =1## in the convergence definition for the subsequence that converges to ##L##.)
Eclair_de_XII said:
Let ##L\in E##. By definition, there is a subsequence ##\{x_{n_k}\}_{k\in\mathbb{N}}## that converges to ##L##. There is a natural number ##N## s.t. if ##n_k\geq N##, ##L\in(x_{n_k}-1,x_{n_k}+1)\subset(\inf\{x_n\}-1,\sup\{x_n\}+1)##. Hence, ##E## is a bounded set.
I had to scribble the line
$$
\inf -1 \leq x_n -1 \leq \sup -1<\sup +1 \wedge \inf -1<\inf +1\leq x_n+1\leq \sup +1 \Longrightarrow \inf -1 \leq x_n\pm 1\leq \sup +1
$$
so that would have helped me, but o.k.

Then you defined ##x:=\sup E##. So if ##x\in E## we are done. Otherwise ##x\in \bar E## and we find a sequence ##(y_n)_{n\in \mathbb{N}}\subseteq E## with ##\lim_{n \to \infty}y_n=x.##

I am not certain what ##L_n## and ##L## are here in the second part, so let me take them as ##L_m=y_m## and ##L=x:=\sup E.##

We have ##y_m\in E## for all ##m##, i.e. by definition: there are subsequences ##(x_{n_{k(m)}})_{k(m)\in \mathbb{N}} \subseteq (x_n)_{n\in \mathbb{N}}## such that ##\lim_{k \to \infty} x_{n_{k(m)}} = y_m##

Now how can we use all these subsequences ##(x_{n_{k(1)}}),(x_{n_{k(2)}}),\ldots,(x_{n_{k(m)}}),\ldots## that converge to ##y_1,y_2,\ldots,y_m,\ldots## to see that the limit of the ##y_m## is in ##E##?

I think your idea (from post ##1##) was the right one, but I have difficulties reading it. You use only one series ##L_n## which are not really defined, whereas we have infinitely many of them.

I think that the assumption ##x\not\in E## can be used to find a contradiction. ##x\not\in E## means that there is an ##\varepsilon_0 >0## such that there are only finitely many other points of ##E## in ##I_{\varepsilon_0} :=(x-\varepsilon_0 ,x+\varepsilon_0).##

Now we have to use the ##y_m## to show that infinitely many of them are in this interval ##I_{\varepsilon_0}.## This can indeed be done with your idea: choose ##y_m## close enough (##m## large enough) such that all of them are in ##I_{\varepsilon_0}## (don't just say "the set", define it).

Remark:
1) I cannot count all the times I first typed "it", "a", "this" or "that" and replaced it again by what I really meant! E.g. my previous paragraph first was
... find a contradiction. It means that there is an ##\varepsilon_0 >0## such that there ...
before I corrected it to
... find a contradiction. ##x\not\in E## means that there is an ##\varepsilon_0 >0## such that there ...
2) If you use a specific constant, as in our case here ##\varepsilon_0##, or in the first part of your proof with ##\varepsilon =1##, then it is useful to give it an index because everybody is so used to "any ##\varepsilon ##, small and positive, but any" that it is helpful to note (by the index) that we have chosen a specific one.

Summary: looks good, but you could improve on readability.
 
  • Like
Likes   Reactions: Eclair_de_XII
fresh_42 said:
It doesn't matter whether ##E## is finite or not.
I see. I need only consider the case when the supremum of ##E## is not an accumulation point, which may be the case even if the cardinality of ##E## is infinite.

fresh_42 said:
I had to scribble the line
I merely used the inequalities:

\begin{eqnarray}
\inf\{x_n\}\leq x_n\\
\sup\{x_n\}\geq x_n\\
x_{n_k}-1<L<x_{n_k}+1\\
-1+\inf\{x_n\}\leq x_{n_k}-1<L<x_{n_k}+1\leq \sup\{x_n\}+1
\end{eqnarray}

fresh_42 said:
I am not certain what ##L_n## and ##L## are here in the second part, so let me take them as ##L_m=y_m## and ##L=x:=\sup E.##

##L_n## is an element of the sequence of subsequential limits that must converge to ##x## since the latter is an accumulation point of ##E##. ##L## is just used in the first part, to show that ##E## is bounded. It has nothing to do with the proof that ##x\in E##.

fresh_42 said:
I think your idea (from post ##1##) was the right one, but I have difficulties reading it. You use only one series ##L_n## which are not really defined, whereas we have infinitely many of them.

I think that the assumption ##x\not\in E## can be used to find a contradiction. ##x\not\in E## means that there is an ##\varepsilon_0 >0## such that there are only finitely many other points of ##E## in ##I_{\varepsilon_0} :=(x-\varepsilon_0 ,x+\varepsilon_0).##

Now we have to use the ##y_m## to show that infinitely many of them are in this interval ##I_{\varepsilon_0}.## This can indeed be done with your idea: choose ##y_m## close enough (##m## large enough) such that all of them are in ##I_{\varepsilon_0}## (don't just say "the set", define it).

Remark:
1) I cannot count all the times I first typed "it", "a", "this" or "that" and replaced it again by what I really meant! E.g. my previous paragraph first was before I corrected it to
2) If you use a specific constant, as in our case here ##\varepsilon_0##, or in the first part of your proof with ##\varepsilon =1##, then it is useful to give it an index because everybody is so used to "any ##\varepsilon ##, small and positive, but any" that it is helpful to note (by the index) that we have chosen a specific one.

Summary: looks good, but you could improve on readability.
Thanks for the feedback, besides.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K