I have problem understand in one step of deriving the Legendre polymonial formula. We start with:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]P_n (x)=\frac{1}{2^n } \sum ^M_{m=0} (-1)^m \frac{2n-2m)}{m!(n-m)(n-2m)}x^n-2m[/tex]

WhereM=n/2 for n=evenandM=(n-1)/2 for n=odd.

For 0<=m<=M

[tex]\Rightarrow \frac{d^n}{dx^n}x^2n-2m = \frac{2n-2m)}{m!(n-m)(n-2m)}x^n-2m[/tex]

For M<m<=n

[tex]\Rightarrow \frac{d^n}{dx^n}x^2n-2m = 0[/tex]

[tex]P_n (x)=\frac{1}{2^n n!} \sum ^M_{m=0} (-1)^m \frac{n!)}{m!(n-m)}\frac{d^n}{dx^n}x^2n-2m [/tex](1)

[tex]\Rightarrow P_n (x)=\frac{1}{2^n n!}\frac{d^n}{dx^n} \sum ^n_{m=0} (-1)^m \frac{n!)}{m!(n-m)}(x^2)^{n-m} [/tex](2)

Notice the [tex]\sum^M_{m=0}[/tex] change to [tex]\sum^n_{m=0}[/tex] from (1) to (2). Can anyone explain this to me?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on Rodrigues' equation in Legendre polynomials.

**Physics Forums | Science Articles, Homework Help, Discussion**