1. I understand that the x in Legendre Equation (1-x^2)y''-2xy'+l(l+1)y=0 is often related to θ in spherical coordinates. We want the latter equation to have a solution at θ=0 and θ=pi. Therefore, we require that Legendre Equation has a solution at x=±1(adsbygoogle = window.adsbygoogle || []).push({});

And it is claimed that "we require the equation to have a polynomial solution, and so l must be an integer. Furthermore, we also require the coefficient c2 of the function Ql(x) (Legendre's function of the second kind) to be zero" But this assumes that at x=±1 the solution of Legendre Equation MUST be found by a power series. Having a solution at x=±1 is not the same as having a power series solution at x=±1.

2. How to solve Legendre Equation with |x|>1?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Questions about Legendre Equation

**Physics Forums | Science Articles, Homework Help, Discussion**