Radicals and the Ring of Quotients

  • Thread starter Thread starter Bashyboy
  • Start date Start date
  • Tags Tags
    Radicals Ring
Click For Summary
SUMMARY

The discussion centers on the relationship between the radical of an ideal and the localization of that ideal in a commutative ring. Specifically, it establishes that for a multiplicative subset S of a commutative ring R with identity, the equation \( S^{-1}(\operatorname{Rad} I) = \operatorname{Rad}(S^{-1}I) \) holds true. Participants analyze the proof steps, confirming that if \( x \in S^{-1}(\operatorname{Rad} I) \), then \( x \) can be expressed as \( \frac{r}{s} \) where \( r \in \operatorname{Rad} I \) and \( s \in S \). They also clarify the implications of \( x \in \operatorname{Rad}(S^{-1}I) \) and its relationship to the elements of the ideal I.

PREREQUISITES
  • Understanding of commutative rings and ideals
  • Familiarity with the concept of localization in ring theory
  • Knowledge of the radical of an ideal
  • Basic proficiency in mathematical notation and proofs
NEXT STEPS
  • Study the properties of multiplicative subsets in ring theory
  • Explore the concept of localization in more depth, focusing on examples
  • Learn about the implications of the radical of an ideal in various algebraic structures
  • Investigate related theorems in commutative algebra, such as the Nullstellensatz
USEFUL FOR

Mathematicians, algebraists, and students studying abstract algebra, particularly those focusing on ring theory and ideal theory.

Bashyboy
Messages
1,419
Reaction score
5

Homework Statement


Let ##S## be a multiplicative subset of a commutative ring ##R## with identity. If ##I## is an ideal in ##R##, then ##S^{-1}(\mbox{ Rad } I) = \mbox{Rad}(S^{-1}I)##.

Homework Equations

The Attempt at a Solution



If ##x \in S^{-1}(\mbox{ Rad } I)##, then ##x = \frac{r}{s}## for some ##r \in \mbox{ Rad } I## and ##s \in S##. Hence, there exists an ##n \in \Bbb{N}## such that ##r^n \in I##; moreover, since ##S## is multiplicative, ##s^n \in S##. Therefore ##\left( \frac{r}{s} \right)^n = \frac{r^n}{s^n} \in S^{-1}I## which means that ##\frac{r}{s} \in \mbox{Rad}(S^{-1}I)##.

Now suppose that ##x \in \mbox{Rad}(S^{-1}I)##. Then there exists a natural number ##n## such that ##S^{-1}I \ni \left( \frac{r}{s} \right)^n = \frac{r^n}{s^n}##. Therefore ##r^n \in I## which implies ##r \in \mbox{Rad } I##, and so ##\frac{r}{s} \in S^{-1}(\mbox{ Rad } I)##.

Is it really that easy, or did I make a simple blunder?
 
Physics news on Phys.org
Bashyboy said:

Homework Statement


Let ##S## be a multiplicative subset of a commutative ring ##R## with identity. If ##I## is an ideal in ##R##, then ##S^{-1}(\mbox{ Rad } I) = \mbox{Rad}(S^{-1}I)##.

Homework Equations

The Attempt at a Solution



If ##x \in S^{-1}(\mbox{ Rad } I)##, then ##x = \frac{r}{s}## for some ##r \in \mbox{ Rad } I## and ##s \in S##. Hence, there exists an ##n \in \Bbb{N}## such that ##r^n \in I##; moreover, since ##S## is multiplicative, ##s^n \in S##. Therefore ##\left( \frac{r}{s} \right)^n = \frac{r^n}{s^n} \in S^{-1}I## which means that ##\frac{r}{s} \in \mbox{Rad}(S^{-1}I)##.

Now suppose that ##x \in \mbox{Rad}(S^{-1}I)##. Then there exists a natural number ##n## such that ##S^{-1}I \ni \left( \frac{r}{s} \right)^n = \frac{r^n}{s^n}##. Therefore ##r^n \in I## which implies ##r \in \mbox{Rad } I##, and so ##\frac{r}{s} \in S^{-1}(\mbox{ Rad } I)##.

Is it really that easy, or did I make a simple blunder?
I don't follow your conclusion ##\operatorname{Rad}(S^{-1}I) \subseteq S^{-1}\operatorname{Rad}(I)##. With ##x \in \operatorname{Rad}(S^{-1}I)## we have ##x^n=rs^{-1}\; , \;r \in I##. How can we assume, that ##x## is of the form ##r^ns^{-n}\,##?
 
Bashyboy said:

Homework Statement


Let ##S## be a multiplicative subset of a commutative ring ##R## with identity. If ##I## is an ideal in ##R##, then ##S^{-1}(\mbox{ Rad } I) = \mbox{Rad}(S^{-1}I)##.

Homework Equations

The Attempt at a Solution



If ##x \in S^{-1}(\mbox{ Rad } I)##, then ##x = \frac{r}{s}## for some ##r \in \mbox{ Rad } I## and ##s \in S##. Hence, there exists an ##n \in \Bbb{N}## such that ##r^n \in I##; moreover, since ##S## is multiplicative, ##s^n \in S##. Therefore ##\left( \frac{r}{s} \right)^n = \frac{r^n}{s^n} \in S^{-1}I## which means that ##\frac{r}{s} \in \mbox{Rad}(S^{-1}I)##.

Now suppose that ##x \in \mbox{Rad}(S^{-1}I)##. Then there exists a natural number ##n## such that ##S^{-1}I \ni \left( \frac{r}{s} \right)^n = \frac{r^n}{s^n}##. Therefore ##r^n \in I## which implies ##r \in \mbox{Rad } I##, and so ##\frac{r}{s} \in S^{-1}(\mbox{ Rad } I)##.

Is it really that easy, or did I make a simple blunder?
I don't follow your conclusion ##\operatorname{Rad}(S^{-1}I) \subseteq S^{-1}\operatorname{Rad}(I)##. With ##x \in \operatorname{Rad}(S^{-1}I)## we have ##x^n=rs^{-1}\; , \;r \in I\,.## How can we assume, that ##x## is of the form ##r^ns^{-n}\,##?
 
Let me try again. Suppose that ##x \in \mbox{Rad}(S^{-1}I)##. Then ##x = \frac{r}{s}## with ##s \in S## and ##r \in R## such that ##x^n = \frac{r^n}{s^n} \in S^{-1} I##. Then by definition ##r^n \in I## and ##s^n \in S## and therefore ##r \in \mbox{Rad } I##. Hence ##\frac{r}{s} \in S^{-1} \mbox{Rad}(I)##.
 
Bashyboy said:
Let me try again. Suppose that ##x \in \mbox{Rad}(S^{-1}I)##. Then ##x = \frac{r}{s}## with ##s \in S## and ##r \in R## such that ##x^n = \frac{r^n}{s^n} \in S^{-1} I##. Then by definition ##r^n \in I## and ##s^n \in S## and therefore ##r \in \mbox{Rad } I##. Hence ##\frac{r}{s} \in S^{-1} \mbox{Rad}(I)##.
For ##x \in \operatorname{Rad}(S^{-1}I) ## we have ##x^n=s^{-1}r## with ##r \in I## by definition. But how do we know that ##x \in RS^{-1}\,?## What have I missed?
 
fresh_42 said:
For x∈Rad(S−1I)x∈Rad⁡(S−1I)x \in \operatorname{Rad}(S^{-1}I) we have xn=s−1rxn=s−1rx^n=s^{-1}r with r∈Ir∈Ir \in I by definition. But how do we know that x∈RS−1?x∈RS−1?x \in RS^{-1}\,? What have I missed?

Well, ##I \subseteq R##, so ##S^{-1} I \subseteq S^{-1} R##.
 
Bashyboy said:
Well, ##I \subseteq R##, so ##S^{-1} I \subseteq S^{-1} R##.
But you only have this for ##x^n## and not for ##x## itself. However, you keep making assumptions on ##x## which have to be proven.

Edit and hint: We want to have ##x=s^{-1}r'## with ##r' \in \operatorname{Rad}(I)## that is ##r'^{\,n} =(sx)^n \in I##.
 
Last edited:
Okay. Here is another try. If ##x \in \mbox{ Rad }(S^{-1})##, then ##x^n \in S^{-1}I## for some ##n \in \Bbb{N}## and therefore ##x^n = \frac{r}{s}## with ##r \in I##. But ##x## is also an element in ##S^{-1}R##, so that ##x = \frac{t}{k}## for ##t \in R## and ##k \in S##. This implies ##\frac{t^n}{k^n} = \frac{r}{s}## which happens if and only if there exists an ##s_1 \in S## such that ##s_1(st^n - rk^n) = 0## or ##s_1s t^n = r s_1 k^n \in I##. Since ##I## is an ideal, ##s_1^n s^n t^n = r s_1^n k^n s^{n-1} \in I##. Hence ##x = \frac{t}{k} = \frac{s_1 s t}{s_1 sk}## with ##(s_1 s t)^n \in I##, which means ##x \in S^{-1} \mbox{ Rad }(I)##.

How does this sound?
 
Bashyboy said:
How does this sound?
Certainly too complicated. And again, why is ##x \in S^{-1}R\;##? Anyway, you don't need this detour.

##x \in \operatorname{Rad}(S^{-1}I)## means ##x^n=s^{-1}r\;(r \in I)## and we get
$$
(sx)^n=s^nx^n=s^{n-1}r \in I \Longrightarrow sx \in \operatorname{Rad}I \Longrightarrow x \in S^{-1}(\operatorname{Rad}I)
$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K