MHB Raghav's question at Yahoo Answers (axioms of vector space)

Click For Summary
The discussion revolves around proving that the set V of all positive real numbers forms a vector space under specific operations. The operations defined are ordinary multiplication for vector addition and an exponential operation for scalar multiplication. It is established that (V, $) is a commutative group, with 1 as the zero vector. The proof requires demonstrating four properties of scalar multiplication, which are outlined in detail. Ultimately, the discussion provides a structured approach to verifying the vector space properties for the defined operations.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let V be the set of all positive real numbers: defined by
u $\$$ v = uv ($ is ordinary multiplication) and define #
by e#v = v^e. Prove that V is a vector space.

How do I go about proving this ? I know how to prove if V is a real vector space, but how do I prove if it is a vector space ?

Here is a link to the question:

Proving a set V is a vector Space? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Hello Raghav,

Clearly, $(V,\$)$ is a commutative group (here, the zero vector is $1$) and $(\mathbb{R},+,\cdot)$ is a field. We need to prove the four properties of the scalar multiplication $\#$. Then, for all $\lambda,\mu$ real scalars and for all $u,v\in V$ vectors:

$(i)\;\lambda\#(u\;\$\;v)=\lambda\#(uv)=(uv)^ {\lambda}=u^{\lambda}v^{\lambda}=u^{\lambda}\;\$\; v^{\lambda}=(\lambda\# u)\;\$\;(\lambda\#v)$

$(ii)\;(\lambda+\mu)\#u=u^{\lambda+\mu}=u^{\lambda}u^{\mu}=(\lambda\#u)\;\$\;(\mu\#u)$

$(iii)\;(\lambda\mu)\# u=u^{\lambda\mu}=(u^{\mu})^{\lambda}=\lambda\#(\mu\#u)$

$(iv)\;1\#u=u^{1}=u$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K