Graduate Raising and lowering operators

  • Thread starter Thread starter John Finn
  • Start date Start date
  • Tags Tags
    Operators
Click For Summary
The discussion centers on the application of raising and lowering operators in solving Schrödinger-like equations, specifically in the context of positive definite conditions. It establishes that if the integral condition involving the wave function and potential is satisfied, the equation can be expressed in terms of operator products, indicating the existence of such operators for any potential. The Riccati equation is highlighted as a key component in determining the function g(x) that facilitates this factorization. This method of using raising and lowering operators is well-established in quantum mechanics and can be found in classic literature, including the work of Infeld and Hull. Overall, the technique is recognized as both valid and useful in the field.
John Finn
Messages
3
Reaction score
1
Suppose you take a Schroedinger-like equation $$-\psi''+F(x)\psi=0$$. (E.g. F(x)=V(x)-E, and not worried about factors of 2 etc.) This is positive definite if $$\int \left( \psi'^2+F(x)\psi^2 \right)dx>0$$. Is so, you can write this as the product $$(d/dx+g(x))(-d/dx+g(x))\psi=0$$, i.e. as $$a^{\dagger}a=0$$ for $$a=-d/dx+g(x)$$ [its adjoint is $$a^{\dagger}=d/dx+g(x)$$] if $$g(x)$$ satisfies a Riccati equation, $$dg/dx+g^2=F$$. So raising and lowering operators hold for any potential.

Is this true? Is it useful? Is it well known?

MENTOR NOTE: Post edited changing single $ to double $ for latex/mathjax expansion.
 
Last edited by a moderator:
Physics news on Phys.org
That you can solve second-order differential equations (of the Schrödinger type) using "raising" and "lowering" operators has been well known for many years now, and the general method for factorizing the equations into products of such operators can be found in this nice paper:
L. Infeld and T. E. Hull, "The Factorization Method", Rev. Mod. Phys. 23, 21 (1951)

If you prefer more accessible explanation of the method before jumping straight into this paper, I suggest that you check out the section in R. Shankar's textbook "Principles of Quantum Mechanics (second edition)" titled "The free particle in spherical coordinates" on page 346. The general techniques and many specific examples (as regards to your question about the validity for "any potentials") can be found in the paper by Infeld and Hull linked above.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K