I Raising & Lowering Indices: Q&A on Relativity

  • I
  • Thread starter Thread starter GR191511
  • Start date Start date
  • Tags Tags
    Indices
GR191511
Messages
76
Reaction score
6
TL;DR Summary
metric tensor
I am reading《Relativity - An Introduction to Special and General Relativity》
my question:
##1=-\eta_{44}L^{n{'}}{_4}L_{n{'}}{^4}=-\eta^{n'}{^{m'}}L_{n{'}}{_4}L_{m'}{_4}##
##\eta## is Minkowski Metric,##L## is Lorentz transformation matrix...

1.Since ##-\eta_{44}##=1,what's the usage of it here?
2.Why is ##-\eta_{44}L^{n{'}}{_4}L_{n{'}}{^4}##equal to##-\eta^{n'}{^{m'}}L_{n{'}}{_4}L_{m'}{_4}##?
3.How does the ##4## of ##L_{n{'}}{^4}## get down?
 
Physics news on Phys.org
That seems a rather odd thing to be doing. Can you check that you've transcribed correctly? And is there some context to this that you can provide?

There are several conventions for notating Lorentz transforms, so check what the textbook says, but I would interpret ##L^a{}_b## and ##L_a{}^b## as forward and reverse transforms so ##L^{n'}{}_aL_{n'}{}^b=\delta^b_a## (edit: corrected index placement)and the 44 component is 1. The operation seems rather pointless, so perhaps I'm misunderstanding something.

You can lower indices on tensors by contracting with the metric and raise them by contracting with the inverse metric. I haven't seen anybody contract the metric with a Lorentz transform before, and I'm not sure it's a good idea because you need to be careful with which coordinate expression of the metric you use, but it's just a sum so it ought to be mathematically legit. And it's not a huge problem with Einstein coordinates on flat spacetime anyway because the metric doesn't change form under Lorentz transformations. So ##L_{ab}=\eta_{ac}L^c{}_b##, I would presume.
 
Last edited:
Ibix said:
That seems a rather odd thing to be doing. Can you check that you've transcribed correctly? And is there some context to this that you can provide?

There are several conventions for notating Lorentz transforms, so check what the textbook says, but I would interpret ##L^a{}_b## and ##L_a{}^b## as forward and reverse transforms so ##L^{n'}_aL^b_{n'}=\delta^b_a## and the 44 component is 1. The operation seems rather pointless, so perhaps I'm misunderstanding something.

You can lower indices on tensors by contracting with the metric and raise them by contracting with the inverse metric. I haven't seen anybody contract the metric with a Lorentz transform before, and I'm not sure it's a good idea because you need to be careful with which coordinate expression of the metric you use, but it's just a sum so it ought to be mathematically legit. And it's not a huge problem with Einstein coordinates on flat spacetime anyway because the metric doesn't change form under Lorentz transformations. So ##L_{ab}=\eta_{ac}L^c{}_b##, I would presume.
the preceding part of the text:
"Evaluating the (4,4) component of (2.5),we obtain (remember that indices are raised and lowered by means of ##\eta##)"
the so called "(2.5)"are: ##x^{n'}=L^{n'}{_a}x^a\qquad x_{m'}=L_{m'}{^b}x_b\qquad L_{m'}{^b}=\eta {_{m'}}{_{n'}}\eta{^a}{^b}L{^{n'}}{_a}##
 
Last edited:
Ibix said:
I haven't seen anybody contract the metric with a Lorentz transform before, and I'm not sure it's a good idea because you need to be careful with which coordinate expression of the metric you use.
Indeed Lorentz transformation is not a tensor, so may be is a nosense contract it with the metric tensor (or its inverse).
 
cianfa72 said:
Indeed Lorentz transformation is not a tensor, so may be is a nosense contract it with the metric tensor (or its inverse).
It most certainly is not. The Lorentz transformation coefficients are the transformation coefficients between different inertial frames.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top