Ramanujan Sums: Showing $c_n(k)$

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Sums
Click For Summary
SUMMARY

The discussion focuses on the nth Ramanujan sum, defined as $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$. It establishes that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$, where ##\mu## is the Möbius function. The analysis includes the conditions under which the sums evaluate to zero or n, depending on whether n divides k. This leads to the conclusion that $$\mu(n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}$$.

PREREQUISITES
  • Understanding of Ramanujan sums and their properties
  • Familiarity with the Möbius function and its definition
  • Knowledge of number theory concepts such as gcd and divisors
  • Proficiency in complex exponentials and their applications in summation
NEXT STEPS
  • Explore the properties of the Möbius function in number theory
  • Study the applications of Ramanujan sums in analytic number theory
  • Investigate the relationship between Ramanujan sums and Fourier analysis
  • Learn about the implications of the results for modular forms and their applications
USEFUL FOR

Mathematicians, number theorists, and students interested in advanced topics in analytic number theory and complex analysis.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
 
  • Like
Likes   Reactions: topsquark and Greg Bernhardt
Physics news on Phys.org
Euge said:
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
Can you define the terms please?
 
  • Like
Likes   Reactions: topsquark
The function ##\mu## is the Möbius function: it is defined by setting ##\mu(1) = 1## and for integers ##n > 1##, ##\mu(n) = (-1)^r## if ##n## is a product of ##r## distinct prime factors. Otherwise ##\mu(n) = 0##.

The notation ##(a,b)## means the gcd of ##a## and ##b##, and ##\sum_{d\mid (k,n)}## means the sum over all positive divisors ##d## of ##(k,n)##.
 
  • Like
Likes   Reactions: topsquark and bob012345
I looked at the case where ##k=1## first. Proved the Mobius inversion formula. Answered the question for ##k=1##. Then proved the general case.

Case ##k=1##.

Consider
\begin{align*}
c_n (1) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
We wish to show:
\begin{align*}
c_n (1) = \sum_{d|(1,n)} d \; \mu \left( \frac{n}{d} \right) = \mu (n)
\end{align*}

The fractions ##\frac{l}{n}##, ##l=1,2, \dots, n## and the fractions defined by ##\frac{m}{d}##, ##(m,d)=1##, ##1 \leq m \leq d## for the set of divisors of ##n##, ##\{ d_1, d_2, \dots , d_s \}##, are the same set of fractions. As such:
\begin{align*}
\sum_{d|n} \sum_{m=1 , (m,d)=1}^d f \left( \frac{m}{d} \right) = \sum_{l=1}^n f \left( \frac{l}{n} \right)
\end{align*}
We use this, for ##n>1##,
\begin{align*}
\sum_{d|n} c_d (1) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{l}{n} \right\} = \dfrac{\exp \left\{ 2 \pi i \right\} - 1}{\exp \left\{ 2 \pi i \frac{1}{n} \right\} - 1} = 0
\end{align*}
If ##n=1##:
\begin{align*}
\sum_{d|1} c_d (1) = \sum_{d|1} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = 1
\end{align*}

Next consider the same sum for ##\mu (n)##. First take ##n>1##. We have ##n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}##. Note the divisors ##d## of ##n## such that ##\mu (d) \not= 0## are the product of members of subsets of: ##\{ p_1 , p_2 , \cdots , p_r \}## (the empty set corresponds to ##d=1##). As there are ##\dfrac{r!}{k! (r-k)!}## ways of choosing subsets of size ##k##, the following:
\begin{align*}
\sum_{k=0}^r \dfrac{r!}{k! (r-k)!} (-1)^k
\end{align*}
will tell us how many more subsets of even number there are than subsets of odd number (where ##k=0## term corresponds to the empty set). The above sum is equal to ##[1 + (-1)]^r = 0##, meaning that there are an equal number of subsets of even number and subsets and odd number. As such:
\begin{align*}
\sum_{d|n} \mu (d) = 0 \qquad (n>1) .
\end{align*}
For ##n=1##:
\begin{align*}
\sum_{d|1} \mu (1) = 1 .
\end{align*}

Summarising, we have
\begin{align*}
\sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right.
\end{align*}
and
\begin{align*}
\sum_{d|n} \mu (d) = \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right. \qquad (*)
\end{align*}

This second result can be used to prove the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu(d) g \left( \frac{n}{d} \right)
\end{align*}
If the divisors of ##n## are ##\{ d_1 , d_2, \dots d_s \}##, define ##\tilde{d}_i = \frac{n}{d_i}## for each ##i##. The ##\{ \tilde{d}_1 , \tilde{d}_2, \dots \tilde{d}_s \}## are the ##s## original distinct divisors in a new order, and obviously, ##d_i = \frac{n}{\tilde{d}_i}##. So that
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) = \sum_{i=1}^s \mu (d_i) g (\tilde{d}_i) = \sum_{i=1}^s \mu (\tilde{d}_i) g (d_i) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d)
\end{align*}
So we have the alternative version of the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) .
\end{align*}
Taking an example:

\begin{align*}
& \sum_{d|8} \mu(d) g \left( \frac{8}{d} \right)
\nonumber \\
& = \sum_{d|8} \mu(d) \sum_{d'|\frac{8}{d}} f \left( d' \right)
\nonumber \\
& = \mu(1) \sum_{d'|8} f \left( d' \right) + \mu(2) \sum_{d'|\frac{8}{2}} f \left( d' \right) + \mu(4) \sum_{d'|\frac{8}{4}} f \left( d' \right) + \mu(8) \sum_{d'|\frac{8}{8}} f \left( d' \right)
\nonumber \\
& = \mu(1) f \left( 1 \right) + \mu(2) f \left( 1 \right) + \mu(4) f \left( 1 \right) + \mu(4) f \left( 1 \right)
\nonumber \\
& + \mu(1) f \left( 2 \right) + \mu(2) f \left( 2 \right) + \mu(4) f \left( 2 \right) + \qquad 0
\nonumber \\
& + \mu(1) f \left( 4 \right) + \mu(2) f \left( 4 \right) + \qquad 0 \qquad + \quad \;\; 0
\nonumber \\
& + \mu(1) f \left( 8 \right) + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0
\nonumber \\
& = f \left( 1 \right) \sum_{d|8} \mu(d) + f \left( 2 \right) \sum_{d|4} \mu(d) + f \left( 4 \right) \sum_{d|2} \mu(d) + f \left( 8 \right) \sum_{d|1} \mu(1)
\nonumber \\
& = \sum_{d'|8} f \left( d' \right) \sum_{d|\frac{8}{d'}} \mu(d)
\nonumber \\
& = f \left( 8 \right) .
\end{align*}
where we have used ##(*)##.

Let ##\{ d_1 , d_2, \dots d_s \}## be the divisors of ##n##. Define
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_i' | \frac{n}{d_j} \\
0 & d_i' \nmid \frac{n}{d_j}
\end{matrix}
\right.
\end{align*}
Note ##d_i' | \frac{n}{d_j}## if and only if ##d_j | \frac{n}{d_i'}##. Thus
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_j | \frac{n}{d_i'} \\
0 & d_j \nmid \frac{n}{d_i'}
\end{matrix}
\right.
\end{align*}
So
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) & = \sum_{d|n} \mu(d) \sum_{d'|\frac{n}{d}} f \left( d' \right)
\nonumber \\
& = \sum_{j=1}^s \mu(d_j) \sum_{i=1}^s \epsilon (d_i',d_j) f \left( d_i' \right)
\nonumber \\
& = \sum_{i=1}^s f \left( d_i' \right) \sum_{j=1}^s \epsilon (d_i',d_j) \mu(d_j)
\nonumber \\
& = \sum_{d'|n} f \left( d' \right) \sum_{d|\frac{n}{d'}} \mu(d)
\nonumber \\
& = f \left( n \right)
\end{align*}
where we have used ##(*)##.

Write
\begin{align*}
f (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
then
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,n)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\}
= \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right.
\end{align*}
and then
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g(d) = \mu (n)
\end{align*}
So finally,
\begin{align*}
\mu (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}Next, the general case, ##1 \leq k##:

Consider
\begin{align*}
c_n (k) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{km}{n} \right\}
\end{align*}
We wish to prove
\begin{align*}
c_n (k) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}

Write ##f(n) = c_n (k)##. When ##n \nmid k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= \dfrac{\exp \left\{ 2 \pi i k \right\} - 1}{\exp \left\{ 2 \pi i \frac{k}{n} \right\} - 1} = 0
\end{align*}
When ##n | k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= n .
\end{align*}
That is:
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\} =
\left\{
\begin{matrix}
n & n | k \\
0 & n \nmid k
\end{matrix}
\right.
\end{align*}
So that
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}
 
Last edited:
  • Like
Likes   Reactions: Euge

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
971
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K