Ramanujan Sums: Showing $c_n(k)$

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Sums
Click For Summary

Discussion Overview

The discussion centers on the properties and definitions of Ramanujan sums, specifically the expression for the ##n##th Ramanujan sum, $$c_n(k)$$, and its relationship to the Möbius function. Participants explore the mathematical formulation and implications of these sums, including conditions under which certain identities hold.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants present the definition of the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ and propose to show that it equals $$\sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$.
  • One participant defines the Möbius function ##\mu## and explains the notation used in the sums, including the meaning of gcd and divisor summation.
  • A participant elaborates on the function $$f(n)$$ and its relationship to $$g(n)$$, providing specific cases for when $$n$$ divides $$k$$ and when it does not, leading to different outcomes for the sums involved.
  • Another participant discusses the implications of the derived expressions for $$g(n)$$ based on the divisibility of $$n$$ and $$k$$, indicating that $$g(n)$$ can be either $$n$$ or $$0$$ depending on these conditions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the implications of the derived expressions, and multiple views on the conditions under which the identities hold remain. The discussion includes both agreement on definitions and differing interpretations of the results.

Contextual Notes

Limitations include the dependence on the definitions of the Möbius function and the conditions under which the sums are evaluated, which are not fully resolved in the discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
 
  • Like
Likes   Reactions: topsquark and Greg Bernhardt
Physics news on Phys.org
Euge said:
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
Can you define the terms please?
 
  • Like
Likes   Reactions: topsquark
The function ##\mu## is the Möbius function: it is defined by setting ##\mu(1) = 1## and for integers ##n > 1##, ##\mu(n) = (-1)^r## if ##n## is a product of ##r## distinct prime factors. Otherwise ##\mu(n) = 0##.

The notation ##(a,b)## means the gcd of ##a## and ##b##, and ##\sum_{d\mid (k,n)}## means the sum over all positive divisors ##d## of ##(k,n)##.
 
  • Like
Likes   Reactions: topsquark and bob012345
I looked at the case where ##k=1## first. Proved the Mobius inversion formula. Answered the question for ##k=1##. Then proved the general case.

Case ##k=1##.

Consider
\begin{align*}
c_n (1) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
We wish to show:
\begin{align*}
c_n (1) = \sum_{d|(1,n)} d \; \mu \left( \frac{n}{d} \right) = \mu (n)
\end{align*}

The fractions ##\frac{l}{n}##, ##l=1,2, \dots, n## and the fractions defined by ##\frac{m}{d}##, ##(m,d)=1##, ##1 \leq m \leq d## for the set of divisors of ##n##, ##\{ d_1, d_2, \dots , d_s \}##, are the same set of fractions. As such:
\begin{align*}
\sum_{d|n} \sum_{m=1 , (m,d)=1}^d f \left( \frac{m}{d} \right) = \sum_{l=1}^n f \left( \frac{l}{n} \right)
\end{align*}
We use this, for ##n>1##,
\begin{align*}
\sum_{d|n} c_d (1) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{l}{n} \right\} = \dfrac{\exp \left\{ 2 \pi i \right\} - 1}{\exp \left\{ 2 \pi i \frac{1}{n} \right\} - 1} = 0
\end{align*}
If ##n=1##:
\begin{align*}
\sum_{d|1} c_d (1) = \sum_{d|1} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = 1
\end{align*}

Next consider the same sum for ##\mu (n)##. First take ##n>1##. We have ##n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}##. Note the divisors ##d## of ##n## such that ##\mu (d) \not= 0## are the product of members of subsets of: ##\{ p_1 , p_2 , \cdots , p_r \}## (the empty set corresponds to ##d=1##). As there are ##\dfrac{r!}{k! (r-k)!}## ways of choosing subsets of size ##k##, the following:
\begin{align*}
\sum_{k=0}^r \dfrac{r!}{k! (r-k)!} (-1)^k
\end{align*}
will tell us how many more subsets of even number there are than subsets of odd number (where ##k=0## term corresponds to the empty set). The above sum is equal to ##[1 + (-1)]^r = 0##, meaning that there are an equal number of subsets of even number and subsets and odd number. As such:
\begin{align*}
\sum_{d|n} \mu (d) = 0 \qquad (n>1) .
\end{align*}
For ##n=1##:
\begin{align*}
\sum_{d|1} \mu (1) = 1 .
\end{align*}

Summarising, we have
\begin{align*}
\sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right.
\end{align*}
and
\begin{align*}
\sum_{d|n} \mu (d) = \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right. \qquad (*)
\end{align*}

This second result can be used to prove the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu(d) g \left( \frac{n}{d} \right)
\end{align*}
If the divisors of ##n## are ##\{ d_1 , d_2, \dots d_s \}##, define ##\tilde{d}_i = \frac{n}{d_i}## for each ##i##. The ##\{ \tilde{d}_1 , \tilde{d}_2, \dots \tilde{d}_s \}## are the ##s## original distinct divisors in a new order, and obviously, ##d_i = \frac{n}{\tilde{d}_i}##. So that
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) = \sum_{i=1}^s \mu (d_i) g (\tilde{d}_i) = \sum_{i=1}^s \mu (\tilde{d}_i) g (d_i) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d)
\end{align*}
So we have the alternative version of the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) .
\end{align*}
Taking an example:

\begin{align*}
& \sum_{d|8} \mu(d) g \left( \frac{8}{d} \right)
\nonumber \\
& = \sum_{d|8} \mu(d) \sum_{d'|\frac{8}{d}} f \left( d' \right)
\nonumber \\
& = \mu(1) \sum_{d'|8} f \left( d' \right) + \mu(2) \sum_{d'|\frac{8}{2}} f \left( d' \right) + \mu(4) \sum_{d'|\frac{8}{4}} f \left( d' \right) + \mu(8) \sum_{d'|\frac{8}{8}} f \left( d' \right)
\nonumber \\
& = \mu(1) f \left( 1 \right) + \mu(2) f \left( 1 \right) + \mu(4) f \left( 1 \right) + \mu(4) f \left( 1 \right)
\nonumber \\
& + \mu(1) f \left( 2 \right) + \mu(2) f \left( 2 \right) + \mu(4) f \left( 2 \right) + \qquad 0
\nonumber \\
& + \mu(1) f \left( 4 \right) + \mu(2) f \left( 4 \right) + \qquad 0 \qquad + \quad \;\; 0
\nonumber \\
& + \mu(1) f \left( 8 \right) + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0
\nonumber \\
& = f \left( 1 \right) \sum_{d|8} \mu(d) + f \left( 2 \right) \sum_{d|4} \mu(d) + f \left( 4 \right) \sum_{d|2} \mu(d) + f \left( 8 \right) \sum_{d|1} \mu(1)
\nonumber \\
& = \sum_{d'|8} f \left( d' \right) \sum_{d|\frac{8}{d'}} \mu(d)
\nonumber \\
& = f \left( 8 \right) .
\end{align*}
where we have used ##(*)##.

Let ##\{ d_1 , d_2, \dots d_s \}## be the divisors of ##n##. Define
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_i' | \frac{n}{d_j} \\
0 & d_i' \nmid \frac{n}{d_j}
\end{matrix}
\right.
\end{align*}
Note ##d_i' | \frac{n}{d_j}## if and only if ##d_j | \frac{n}{d_i'}##. Thus
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_j | \frac{n}{d_i'} \\
0 & d_j \nmid \frac{n}{d_i'}
\end{matrix}
\right.
\end{align*}
So
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) & = \sum_{d|n} \mu(d) \sum_{d'|\frac{n}{d}} f \left( d' \right)
\nonumber \\
& = \sum_{j=1}^s \mu(d_j) \sum_{i=1}^s \epsilon (d_i',d_j) f \left( d_i' \right)
\nonumber \\
& = \sum_{i=1}^s f \left( d_i' \right) \sum_{j=1}^s \epsilon (d_i',d_j) \mu(d_j)
\nonumber \\
& = \sum_{d'|n} f \left( d' \right) \sum_{d|\frac{n}{d'}} \mu(d)
\nonumber \\
& = f \left( n \right)
\end{align*}
where we have used ##(*)##.

Write
\begin{align*}
f (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
then
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,n)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\}
= \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right.
\end{align*}
and then
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g(d) = \mu (n)
\end{align*}
So finally,
\begin{align*}
\mu (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}Next, the general case, ##1 \leq k##:

Consider
\begin{align*}
c_n (k) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{km}{n} \right\}
\end{align*}
We wish to prove
\begin{align*}
c_n (k) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}

Write ##f(n) = c_n (k)##. When ##n \nmid k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= \dfrac{\exp \left\{ 2 \pi i k \right\} - 1}{\exp \left\{ 2 \pi i \frac{k}{n} \right\} - 1} = 0
\end{align*}
When ##n | k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= n .
\end{align*}
That is:
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\} =
\left\{
\begin{matrix}
n & n | k \\
0 & n \nmid k
\end{matrix}
\right.
\end{align*}
So that
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}
 
Last edited:
  • Like
Likes   Reactions: Euge

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K