The discussion centers on the properties and definitions of Ramanujan sums, specifically the expression for the ##n##th Ramanujan sum, $$c_n(k)$$, and its relationship to the Möbius function. Participants explore the mathematical formulation and implications of these sums, including conditions under which certain identities hold.
Discussion Character
Technical explanation
Mathematical reasoning
Debate/contested
Main Points Raised
Some participants present the definition of the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ and propose to show that it equals $$\sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$.
One participant defines the Möbius function ##\mu## and explains the notation used in the sums, including the meaning of gcd and divisor summation.
A participant elaborates on the function $$f(n)$$ and its relationship to $$g(n)$$, providing specific cases for when $$n$$ divides $$k$$ and when it does not, leading to different outcomes for the sums involved.
Another participant discusses the implications of the derived expressions for $$g(n)$$ based on the divisibility of $$n$$ and $$k$$, indicating that $$g(n)$$ can be either $$n$$ or $$0$$ depending on these conditions.
Areas of Agreement / Disagreement
Participants do not reach a consensus on the implications of the derived expressions, and multiple views on the conditions under which the identities hold remain. The discussion includes both agreement on definitions and differing interpretations of the results.
Contextual Notes
Limitations include the dependence on the definitions of the Möbius function and the conditions under which the sums are evaluated, which are not fully resolved in the discussion.
#1
Euge
Gold Member
MHB
POTW Director
2,072
245
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
Consider the ##n##th Ramanujan sum, $$c_n(k) = \sum_{\substack{m = 1\\(m,n) = 1}}^n \exp\left\{2\pi i \frac{k m}{n}\right\}$$ Show that $$c_n(k) = \sum_{d\mid (k,n)} d\, \mu\left(\frac{n}{d}\right)$$
Can you define the terms please?
#3
Euge
Gold Member
MHB
POTW Director
2,072
245
The function ##\mu## is the Möbius function: it is defined by setting ##\mu(1) = 1## and for integers ##n > 1##, ##\mu(n) = (-1)^r## if ##n## is a product of ##r## distinct prime factors. Otherwise ##\mu(n) = 0##.
The notation ##(a,b)## means the gcd of ##a## and ##b##, and ##\sum_{d\mid (k,n)}## means the sum over all positive divisors ##d## of ##(k,n)##.
I looked at the case where ##k=1## first. Proved the Mobius inversion formula. Answered the question for ##k=1##. Then proved the general case.
Case ##k=1##.
Consider
\begin{align*}
c_n (1) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
We wish to show:
\begin{align*}
c_n (1) = \sum_{d|(1,n)} d \; \mu \left( \frac{n}{d} \right) = \mu (n)
\end{align*}
The fractions ##\frac{l}{n}##, ##l=1,2, \dots, n## and the fractions defined by ##\frac{m}{d}##, ##(m,d)=1##, ##1 \leq m \leq d## for the set of divisors of ##n##, ##\{ d_1, d_2, \dots , d_s \}##, are the same set of fractions. As such:
\begin{align*}
\sum_{d|n} \sum_{m=1 , (m,d)=1}^d f \left( \frac{m}{d} \right) = \sum_{l=1}^n f \left( \frac{l}{n} \right)
\end{align*}
We use this, for ##n>1##,
\begin{align*}
\sum_{d|n} c_d (1) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{l}{n} \right\} = \dfrac{\exp \left\{ 2 \pi i \right\} - 1}{\exp \left\{ 2 \pi i \frac{1}{n} \right\} - 1} = 0
\end{align*}
If ##n=1##:
\begin{align*}
\sum_{d|1} c_d (1) = \sum_{d|1} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\} = 1
\end{align*}
Next consider the same sum for ##\mu (n)##. First take ##n>1##. We have ##n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}##. Note the divisors ##d## of ##n## such that ##\mu (d) \not= 0## are the product of members of subsets of: ##\{ p_1 , p_2 , \cdots , p_r \}## (the empty set corresponds to ##d=1##). As there are ##\dfrac{r!}{k! (r-k)!}## ways of choosing subsets of size ##k##, the following:
\begin{align*}
\sum_{k=0}^r \dfrac{r!}{k! (r-k)!} (-1)^k
\end{align*}
will tell us how many more subsets of even number there are than subsets of odd number (where ##k=0## term corresponds to the empty set). The above sum is equal to ##[1 + (-1)]^r = 0##, meaning that there are an equal number of subsets of even number and subsets and odd number. As such:
\begin{align*}
\sum_{d|n} \mu (d) = 0 \qquad (n>1) .
\end{align*}
For ##n=1##:
\begin{align*}
\sum_{d|1} \mu (1) = 1 .
\end{align*}
This second result can be used to prove the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu(d) g \left( \frac{n}{d} \right)
\end{align*}
If the divisors of ##n## are ##\{ d_1 , d_2, \dots d_s \}##, define ##\tilde{d}_i = \frac{n}{d_i}## for each ##i##. The ##\{ \tilde{d}_1 , \tilde{d}_2, \dots \tilde{d}_s \}## are the ##s## original distinct divisors in a new order, and obviously, ##d_i = \frac{n}{\tilde{d}_i}##. So that
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) = \sum_{i=1}^s \mu (d_i) g (\tilde{d}_i) = \sum_{i=1}^s \mu (\tilde{d}_i) g (d_i) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d)
\end{align*}
So we have the alternative version of the Mobius inversion formula:
\begin{align*}
\text{if} \qquad
g (n) = \sum_{d|n} f(d)
\qquad \text{then} \qquad
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) .
\end{align*}
Taking an example:
\begin{align*}
& \sum_{d|8} \mu(d) g \left( \frac{8}{d} \right)
\nonumber \\
& = \sum_{d|8} \mu(d) \sum_{d'|\frac{8}{d}} f \left( d' \right)
\nonumber \\
& = \mu(1) \sum_{d'|8} f \left( d' \right) + \mu(2) \sum_{d'|\frac{8}{2}} f \left( d' \right) + \mu(4) \sum_{d'|\frac{8}{4}} f \left( d' \right) + \mu(8) \sum_{d'|\frac{8}{8}} f \left( d' \right)
\nonumber \\
& = \mu(1) f \left( 1 \right) + \mu(2) f \left( 1 \right) + \mu(4) f \left( 1 \right) + \mu(4) f \left( 1 \right)
\nonumber \\
& + \mu(1) f \left( 2 \right) + \mu(2) f \left( 2 \right) + \mu(4) f \left( 2 \right) + \qquad 0
\nonumber \\
& + \mu(1) f \left( 4 \right) + \mu(2) f \left( 4 \right) + \qquad 0 \qquad + \quad \;\; 0
\nonumber \\
& + \mu(1) f \left( 8 \right) + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0 \quad \;\;\; + \quad \;\;\; 0
\nonumber \\
& = f \left( 1 \right) \sum_{d|8} \mu(d) + f \left( 2 \right) \sum_{d|4} \mu(d) + f \left( 4 \right) \sum_{d|2} \mu(d) + f \left( 8 \right) \sum_{d|1} \mu(1)
\nonumber \\
& = \sum_{d'|8} f \left( d' \right) \sum_{d|\frac{8}{d'}} \mu(d)
\nonumber \\
& = f \left( 8 \right) .
\end{align*}
where we have used ##(*)##.
Let ##\{ d_1 , d_2, \dots d_s \}## be the divisors of ##n##. Define
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_i' | \frac{n}{d_j} \\
0 & d_i' \nmid \frac{n}{d_j}
\end{matrix}
\right.
\end{align*}
Note ##d_i' | \frac{n}{d_j}## if and only if ##d_j | \frac{n}{d_i'}##. Thus
\begin{align*}
\epsilon (d_i',d_j) =
\left\{
\begin{matrix}
1 & d_j | \frac{n}{d_i'} \\
0 & d_j \nmid \frac{n}{d_i'}
\end{matrix}
\right.
\end{align*}
So
\begin{align*}
\sum_{d|n} \mu(d) g \left( \frac{n}{d} \right) & = \sum_{d|n} \mu(d) \sum_{d'|\frac{n}{d}} f \left( d' \right)
\nonumber \\
& = \sum_{j=1}^s \mu(d_j) \sum_{i=1}^s \epsilon (d_i',d_j) f \left( d_i' \right)
\nonumber \\
& = \sum_{i=1}^s f \left( d_i' \right) \sum_{j=1}^s \epsilon (d_i',d_j) \mu(d_j)
\nonumber \\
& = \sum_{d'|n} f \left( d' \right) \sum_{d|\frac{n}{d'}} \mu(d)
\nonumber \\
& = f \left( n \right)
\end{align*}
where we have used ##(*)##.
Write
\begin{align*}
f (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}
then
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,n)=1}^d \exp \left\{ 2 \pi i \frac{m}{d} \right\}
= \left\{
\begin{matrix}
1 & n=1 \\
0 & n>1
\end{matrix}
\right.
\end{align*}
and then
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g(d) = \mu (n)
\end{align*}
So finally,
\begin{align*}
\mu (n) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{m}{n} \right\}
\end{align*}Next, the general case, ##1 \leq k##:
Consider
\begin{align*}
c_n (k) = \sum_{m=1 , (m,n)=1}^n \exp \left\{ 2 \pi i \frac{km}{n} \right\}
\end{align*}
We wish to prove
\begin{align*}
c_n (k) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}
Write ##f(n) = c_n (k)##. When ##n \nmid k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= \dfrac{\exp \left\{ 2 \pi i k \right\} - 1}{\exp \left\{ 2 \pi i \frac{k}{n} \right\} - 1} = 0
\end{align*}
When ##n | k##,
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\}
= \sum_{l=1}^n \exp \left\{ 2 \pi i \frac{kl}{n} \right\}
= n .
\end{align*}
That is:
\begin{align*}
g (n) = \sum_{d|n} \sum_{m=1 , (m,d)=1}^d \exp \left\{ 2 \pi i \frac{km}{d} \right\} =
\left\{
\begin{matrix}
n & n | k \\
0 & n \nmid k
\end{matrix}
\right.
\end{align*}
So that
\begin{align*}
f (n) = \sum_{d|n} \mu \left( \frac{n}{d} \right) g (d) = \sum_{d|(k,n)} d \; \mu \left( \frac{n}{d} \right)
\end{align*}