- 7,678
- 12,360
- TL;DR Summary
- Possible values of cardinality in different models of ZFC+ ~CH
Ok, so assume we have a model for ZFC where CH does not hold. What values may ##2^{\aleph_0}## assume over said models?
A result of Solovay, proved shortly after Cohen's result on the independence of the continuum hypothesis, shows that in any model of ZFC, if ##\kappa## is a cardinal of uncountable cofinality, then there is a forcing extension in which ##2^{\aleph_0} = \kappa##. However, per König's theorem, it is not consistent to assume ##2^{\aleph _{0}}## is ##\aleph _{\omega }## or ##\aleph _{\omega _{1}+\omega }## or any cardinal with cofinality ##\omega##.