Graduate Range of values for ##2^{\aleph_0}##

Click For Summary
In models of ZFC where the Continuum Hypothesis (CH) does not hold, the value of 2^{\aleph_0} can vary significantly. Solovay's result indicates that for any uncountable cardinal \kappa, there exists a forcing extension where 2^{\aleph_0} equals \kappa. However, König's theorem restricts the values of 2^{\aleph_0}, stating it cannot be \aleph_{\omega}, \aleph_{\omega_1 + \omega}, or any cardinal with cofinality \omega. This highlights the complexity of cardinality in set theory under different models. Understanding these relationships is crucial for exploring the implications of the Continuum Hypothesis.
WWGD
Science Advisor
Homework Helper
Messages
7,772
Reaction score
13,008
TL;DR
Possible values of cardinality in different models of ZFC+ ~CH
Ok, so assume we have a model for ZFC where CH does not hold. What values may ##2^{\aleph_0}## assume over said models?
 
Physics news on Phys.org
According to Wikipedia,

A result of Solovay, proved shortly after Cohen's result on the independence of the continuum hypothesis, shows that in any model of ZFC, if ##\kappa## is a cardinal of uncountable cofinality, then there is a forcing extension in which ##2^{\aleph_0} = \kappa##. However, per König's theorem, it is not consistent to assume ##2^{\aleph _{0}}## is ##\aleph _{\omega }## or ##\aleph _{\omega _{1}+\omega }## or any cardinal with cofinality ##\omega##.
 
Excellent, Steven Daryl, thank you.
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K