MHB Ratio of areas of squares - Challenging problem

Click For Summary
The discussion revolves around a challenging geometry problem involving the ratio of areas between two squares, ABCD and KLIJ, with specific vertex connections. The problem presents two scenarios with ratios of 1:3 and 1:4, prompting participants to explore solutions and geometric interpretations. A proposed solution uses similar triangles to derive the area ratio, resulting in a formula that simplifies the calculation of the inner square's dimensions. Additionally, the conversation touches on the behavior of a related function and its geometric implications, including the significance of increasing/decreasing areas and asymptotes. Overall, the thread emphasizes collaborative problem-solving in geometry.
Lancelot1
Messages
26
Reaction score
0
Hello all,

I have encountered a very difficult question in geometry. The question has several parts. I really need your help. I have tried solving the first and second ones, not sure I did it correctly, and certainly don't know how to proceed and what the results means. I would really appreciate your help in solving this tricky one...My solution is at the end, below the question.

Thank you in advance !

1) A square ABCD is given. Each vertex is connected with a point on the opposite edge (clockwise) such that the ratio between the closer part to the vertex and the edge of the square is 1:3. Find the ratio of areas between the squares KLIJ and ABCD.

View attachment 8006

2) Solve the previous problem when the ratio is 1:4 instead of 1:3.

3) Complete the following table:

View attachment 8005

What is your conclusion ?

4) Look at the graph of

\[f(x)=\frac{(x-1)^{2}}{x^{2}+1}\]

View attachment 8007

What is the geometric explanation to the function's behavior ?
What is the meaning of area where the function increases / decreases ? What is the meaning of the asymptote ? Can this function be generalized to the negative region ? What does it mean ?

My solution (assuming the length is 1):

View attachment 8008

View attachment 8009
 

Attachments

  • square problem 2.PNG
    square problem 2.PNG
    2.4 KB · Views: 134
  • square problem.PNG
    square problem.PNG
    11.9 KB · Views: 132
  • square problem 3.PNG
    square problem 3.PNG
    4.7 KB · Views: 133
  • square problem 4.PNG
    square problem 4.PNG
    8.7 KB · Views: 116
  • square problem 5.PNG
    square problem 5.PNG
    9.7 KB · Views: 136
Mathematics news on Phys.org
This is an interesting problem. I found it easier to take the size of the large square $ABCD$ to be $n\times n$, so that the lengths of the segments $AE$, $BH$, ... , are $1$.

I think that the best way to tackle the problem is to use similar triangles. The triangles $ABH$ and $AIE$ are similar (having the same angles). The sides of the larger triangle $ABH$ are $1$, $n$ and (by Pythagoras) $\sqrt{n^2+1}$. The hypotenuse of the smaller triangle $AIE$ is $1$, so the ratio of corresponding sides in the triangles is $1:\sqrt{n^2+1}$. From that, you can find the lengths of the other two sides of the smaller triangle.

Now look at the line $AH = AI + IL + LH$. In that equation, you now know everything except $IL$. So you can use that to find the length of the sides of the inner square $IJKL$, which turns out to be $\dfrac{n(n-1)}{\sqrt{n^2+1}}.$ That gives the ratio of the areas of the squares $ABCD$ and $IJKL$ to be $\dfrac{(n-1)^2}{n^2+1}$.

Your calculation using areas is also a good method, and it is correct right up to the last line $S_{KLIJ} = S_{ABCD} - 3S_{\triangle DEA} + 4S_{\triangle DJF}$, which should be $S_{KLIJ} = S_{ABCD} - 4S_{\triangle DEA} + 4S_{\triangle DJF}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...