MHB Rational: $(p^2+1)(q^2+1)(r^2+1)$ is Square

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Rational
Click For Summary
For rational numbers \( p, q, r \) satisfying \( pq + qr + rp = 1 \), it is demonstrated that \( (p^2+1)(q^2+1)(r^2+1) \) is a perfect square. The roots of the polynomial \( x^3 - \lambda x^2 + x - \nu = 0 \) relate to \( p, q, r \), where \( \lambda = p+q+r \) and \( \nu = pqr \). By transforming the polynomial to find the roots \( p^2, q^2, r^2 \), the resulting equation for \( p^2+1, q^2+1, r^2+1 \) shows that their product equals \( (\lambda - \nu)^2 \). This confirms that \( (p^2+1)(q^2+1)(r^2+1) \) is indeed the square of a rational number. The discussion highlights the relationship between the roots and the conditions set by the initial equation.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Show that for $p,q,r$ if $pq+qr+rp=1$ then $(p^2+1)(q^2+1)(r^2+1)$ is square of rational number
 
Mathematics news on Phys.org
Are $p,\, q$ and $r$ rational numbers?
 
Euge said:
Are $p,\, q$ and $r$ rational numbers?

Thanks for pinpointing. They are rational.
 
Ok then, here's my solution.

We have

$\displaystyle (p^2+1)(q^2+1)(r^2+1)$

$\displaystyle = (pqr)^2 + [(pq)^2 + (qr)^2 + (rp)^2] + (p^2 + q^2 + r^2) + 1$

$\displaystyle = (pqr)^2 + [(pq+qr+rp)^2-2(pqr)(p+q+r)] + [(p+q+r)^2-2(pq+qr+rp)] + 1$

$\displaystyle = (pqr)^2 + [1 - 2(pqr)(p+q+r)] + [(p+q+r)^2-2] + 1$

$\displaystyle = (pqr)^2 - 2(pqr)(p+q+r) + (p+q+r)^2$

$\displaystyle = (pqr - p - q - r)^2$.

Since $p,\, q$ and $r$ are rational, so is $pqr - p - q - r$. Thus we have shown that $(p^2+1)(q^2+1)(r^2+1)$ is the square of the rational number $pqr-p-q-r$.
 
Another solution:
[sp]Let $x^3 - \lambda x^2 + x - \nu = 0$ be the equation with roots $p,q,r$ (so that $\lambda = p+q+r$ and $\nu = pqr$, the coefficient of $x$ being $qr+rp+pq = 1$).

The equation with roots $p^2,q^2,r^2$ is $x^{3/2} - \lambda x + x^{1 /2} - \nu = 0$, or $x^{1 /2}(x+1) = \lambda x + \nu$, or $x(x+1)^2 = \lambda^2x^2 + 2\lambda\nu x + \nu^2$.

The equation with roots $p^2+1, q^2+1, r^2+1$ is obtained by substituting $x-1$ for $x$ in that last equation, getting $(x-1)x^2 = \lambda^2(x-1)^2 + 2\lambda\nu (x-1) + \nu^2$, or $x^3 - (1+\lambda^2)x^2 + 2\lambda(\lambda-\nu)x - (\lambda^2 - 2\lambda\nu + \nu^2) = 0$. The product of the roots of that equation is $(p^2+1)(q^2+1)(r^2+1) = \lambda^2 - 2\lambda\nu + \nu^2 = (\lambda - \nu)^2$, which is the square of the rational number $\lambda - \nu$.[/sp]
 
2 excellent solutions above. Here is mine and definitely more complex and hence not elegant

$pq+qr+rp = 1$

so $p = \dfrac{1-qr}{q+r}$
Here I may mention that if $q+r = 0$ the we can permute $p,q,r$ such that q+r is not zero

if we chose $q =\ tan\, A$ and $r =\ tan\ B$
we get

$\frac{1}{p} =\dfrac{q+r}{1-qr} =\dfrac {(\tan\ A +\ tan\ B}{(1- \tan\ A\ tan\ B}=\ tan (A+B)$

or $p = \cot (A+B)$

we can chose q and r to be <1 in case we want positive else even -ve also
$(p^2+1) (q^2+1)(r^2+ 1)$
= $\sec^2 A\ \sec ^2 B\ \csc^2 (A+B)$
= $\dfrac{(\sec^2 A\ \ sec^2 B}{\sin^2 (A+B)}$
this is square of reciprocal of $\ sin (A+B)\ cos\ A\ \cos\ B$
$\sin (A+B) \cos\ A\ \cos B$
=$( \sin\ A\ \cos B + \cos\ A\ \sin B)cos\ A\ \ cos\ B$
=$ \sin\ A\ \cos \ A\ \cos ^2B +\ cos^2 A \ \sin B\ \ cos B$
=$\tan\ A\ \ cos ^2 A\ \ cos ^2 B +\ tan\ B \ \
cos ^2 A\ \ cos ^2 B$
= ${(\tan\ A + \tan\ B)}{/(\sec^2 A\ \sec ^2B)}$
= $\dfrac{tan\ A + tan\ B}{(1+ tan ^2 A)(1+ tan ^2B)}$

so $(p^2+1) (q^2+1)(r^2+ 1)$
= $\dfrac{((1+ \tan ^2 A )(1+\tan ^2B)}{(\tan \ A +\ tan B))^2}$

if $ \tan \ A$ and $tan\ B$ that is q and r are rational then

$\dfrac{(1+ \tan ^2 A)(1+\tan ^2B)}{(\tan\ A +\tan\ B)}$ is rational and so $(p^2 +1)(q^2+1)(r^2 +1)$ is the square of a rational no.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K