Real and Complex Solutions for Linear System with 2x2 Matrix

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Complex
Click For Summary

Discussion Overview

This discussion revolves around the solutions for a linear system represented by a 2x2 matrix, specifically focusing on the real and complex solutions derived from the characteristic equation. Participants explore the implications of eigenvalues being real or complex, and how to transform solutions back to a different variable.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants present the characteristic equation and eigenvalues, noting that they are complex for $-1 < a < 1$ and real otherwise.
  • One participant suggests that separating the real and complex cases is unnecessary, proposing a unified solution format.
  • Several participants inquire about transforming the solution from variable $\mathbf{u}$ back to variable $\mathbf{x}$, with suggestions to use a rotation matrix.
  • Another participant emphasizes the importance of maintaining consistent arguments in trigonometric functions during transformations to ensure correct cancellations in differential equations.
  • There is a correction regarding the arguments of the trigonometric functions, with a consensus that they should be $2t$ instead of $t$.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical framework and the method of transformation, but there are disagreements regarding the separation of real and complex cases and the correct arguments for the trigonometric functions.

Contextual Notes

Some participants note potential typos and the need for careful attention to the arguments in trigonometric functions when making substitutions in differential equations.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}.
$$
The characteristic equation is
$$
\lambda^2 -a^2 + 1 = 0\iff \lambda = \sqrt{a^2 - 1}.
$$
The eigenvalues are complex when $-1 < a < 1$ and real otherwise.
Let's consider the real case first.
We have that $(a - \lambda)u_1 + u_2 = 0\iff u_2 = (\lambda - a)u_1$.
Then
$$
u = \begin{pmatrix}
1\\
\lambda - a
\end{pmatrix}.
$$
The solution for the real case is
$$
\mathbf{u} = A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
\sqrt{a^2 - 1} - a
\end{pmatrix}
+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
-\sqrt{a^2 - 1} - a
\end{pmatrix}.
$$
Next, let's look at the complex case.
We have $(a - \lambda)u_1 + u_2 = 0\iff u_2 = (\lambda - a)u_1$.
Then
$$
u = \begin{pmatrix}
1\\
\lambda - a
\end{pmatrix}.
$$
The solution for the complex case is
$$
\mathbf{u} = A\exp\left[ti\sqrt{1 - a^2}\right]\begin{pmatrix}
1\\
i\sqrt{1 - a^2} - a
\end{pmatrix} +
B\exp\left[-ti\sqrt{1 - a^2}\right]\begin{pmatrix}
1\\
-i\sqrt{1 - a^2} - a
\end{pmatrix}.
$$

Correct?
 
Physics news on Phys.org
dwsmith said:
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}.
$$
The characteristic equation is
$$
\lambda^2 -a^2 + 1 = 0\iff \lambda = {\color{red}\pm}\sqrt{a^2 - 1}.
$$
The eigenvalues are complex when $-1 < a < 1$ and real otherwise.
Let's consider the real case first.
We have that $(a - \lambda)u_1 + u_2 = 0\iff u_2 = (\lambda - a)u_1$.
Then
$$
u = \begin{pmatrix}
1\\
\lambda - a
\end{pmatrix}.
$$
The solution for the real case is
$$
\mathbf{u} = A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
\sqrt{a^2 - 1} - a
\end{pmatrix}
+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
-\sqrt{a^2 - 1} - a
\end{pmatrix}.
$$
Next, let's look at the complex case.
We have $(a - \lambda)u_1 + u_2 = 0\iff u_2 = (\lambda - a)u_1$.
Then
$$
u = \begin{pmatrix}
1\\
\lambda - a
\end{pmatrix}.
$$
The solution for the complex case is
$$
\mathbf{u} = A\exp\left[ti\sqrt{1 - a^2}\right]\begin{pmatrix}
1\\
i\sqrt{1 - a^2} - a
\end{pmatrix} +
B\exp\left[-ti\sqrt{1 - a^2}\right]\begin{pmatrix}
1\\
-i\sqrt{1 - a^2} - a
\end{pmatrix}.
$$

Correct?

Hi dwsmith, :)

I see no errors in your solution. But it is unnecessary to consider the real and complex cases separately. You can give the solution as,

\[\mathbf{u} = A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\ \sqrt{a^2 - 1} - a\end{pmatrix}+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\-\sqrt{a^2 - 1} - a\end{pmatrix}\mbox{ for }a\in\Re\]

Kind Regards,
Sudharaka.
 
To expand on this now, referring to http://www.mathhelpboards.com/f10/change-variables-1871/#post8706.

How can I take u back to x with the u solution?
 
dwsmith said:
To expand on this now, referring to http://www.mathhelpboards.com/f10/change-variables-1871/#post8706.

How can I take u back to x with the u solution?

Just multiply $\mathbf{u}$ by the necessary rotation matrix to get $\mathbf{x}$.
 
Ackbach said:
Just multiply $\mathbf{u}$ by the necessary rotation matrix to get $\mathbf{x}$.

So it will be $xu$ where u is the Ay_1+By_2?
 
Ackbach said:
Just multiply $\mathbf{u}$ by the necessary rotation matrix to get $\mathbf{x}$.

What Ackbach meant was,

\begin{eqnarray}

\mathbf{x} &=& \begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}\mathbf{u}\\

&=&\begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}\left[A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\ \sqrt{a^2 - 1} - a\end{pmatrix}+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\-\sqrt{a^2 - 1} - a\end{pmatrix}\right]

\end{eqnarray}

Kind Regards,
Sudharaka.
 
Sudharaka said:
What Ackbach meant was,

\begin{eqnarray}

\mathbf{x} &=& \begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}\mathbf{u}\\

&=&\begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}\left[A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\ \sqrt{a^2 - 1} - a\end{pmatrix}+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}1\\-\sqrt{a^2 - 1} - a\end{pmatrix}\right]

\end{eqnarray}

Kind Regards,
Sudharaka.

So the solution is
\begin{alignat*}{3}
\mathbf{x} & = & \begin{pmatrix}
\cos t & -\sin t\\
\sin t & \cos t
\end{pmatrix}\left[A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
\sqrt{a^2 - 1} - a
\end{pmatrix}
+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
-\sqrt{a^2 - 1} - a
\end{pmatrix}\right]\\
& = & A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
\cos t - \sin t\left(\sqrt{a^2 - 1} - a\right)\\
\sin t + \cos t\left(\sqrt{a^2 - 1} - a\right)
\end{pmatrix}\\
& & + B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
\cos t + \sin t\left(\sqrt{a^2 - 1} + a\right)\\
\sin t - \cos t\left(\sqrt{a^2 - 1} + a\right)
\end{pmatrix}
\end{alignat*}
 
dwsmith said:
So the solution is
\begin{alignat*}{3}
\mathbf{x} & = & \begin{pmatrix}
\cos t & -\sin t\\
\sin t & \cos t
\end{pmatrix}\left[A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
\sqrt{a^2 - 1} - a
\end{pmatrix}
+ B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
1\\
-\sqrt{a^2 - 1} - a
\end{pmatrix}\right]\\
& = & A\exp\left[t\sqrt{a^2 - 1}\right]\begin{pmatrix}
\cos t - \sin t\left(\sqrt{a^2 - 1} - a\right)\\
\sin t + \cos t\left(\sqrt{a^2 - 1} - a\right)
\end{pmatrix}\\
& & + B\exp\left[-t\sqrt{a^2 - 1}\right]\begin{pmatrix}
\cos t + \sin t\left(\sqrt{a^2 - 1} + a\right)\\
\sin t - \cos t\left(\sqrt{a^2 - 1} + a\right)
\end{pmatrix}
\end{alignat*}

Correct. (Yes)
 
The arguments of the trig functions are all $2t$, not $t$. But that's definitely the right idea.
 
  • #10
Ackbach said:
The arguments of the trig functions are all $2t$, not $t$. But that's definitely the right idea.

What?
 
  • #11
Ackbach said:
The arguments of the trig functions are all $2t$, not $t$. But that's definitely the right idea.

Hi Ackbach, :)

dwsmith has mentioned(http://www.mathhelpboards.com/f10/change-variables-1871/#post8662) that he had made a typo and the transformation should be,

\[\mathbf{x} = \begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}\mathbf{u}\]

I was referring to this in my previous post.

Kind Regards,
Sudharaka.
 
  • #12
All I know is this: assuming the original DE is
$$\dot{\mathbf{x}}=a\begin{bmatrix} \cos(2t) & \sin(2t)\\ \sin(2t) & -\cos(2t)\end{bmatrix}\mathbf{x},$$
the substitution
$$\mathbf{x}=\begin{bmatrix} \cos(2t) &-\sin(2t)\\ \sin(2t) & \cos(2t)\end{bmatrix}\mathbf{u}$$
reduces the DE to
$$\dot{\mathbf{u}}=\begin{bmatrix} a &2\\ -2 &-a\end{bmatrix}\mathbf{u}.$$
So you solve this new DE in $\mathbf{u}$ using the usual eigenvalue method, and then multiply by the rotation matrix
$$\begin{bmatrix} \cos(2t) &-\sin(2t)\\ \sin(2t) & \cos(2t)\end{bmatrix}$$
to get the final result.

Whatever substitution you make must have the same arguments for the trig functions as are in the original DE, or else you won't get the nice cancellations you need to get a constant-coefficients equivalent DE in $\mathbf{u}$. If the original DE had simply $t$ as the argument for the trig functions, then so must the substitution.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K