MHB Real Solutions of 4cos(e^x) = 2^x+2^-x: ln(2pi) < log2(2+sqrt3) < ln(3pi)

  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
The discussion focuses on finding the number of roots for the equation 4cos(e^x) = 2^x + 2^(-x) under the condition that ln(2π) < log2(2 + √3) < ln(3π). Participants analyze the implications of this inequality on the behavior of both sides of the equation. The relationship between the functions involved suggests that the number of intersections, or roots, can be determined by examining their properties and graphs. The conversation emphasizes the importance of understanding logarithmic and trigonometric functions in solving such equations. Ultimately, the goal is to establish the exact count of real solutions based on the given logarithmic condition.
juantheron
Messages
243
Reaction score
1
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
 
Mathematics news on Phys.org
jacks said:
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
let $A=ln(2\pi)\approx 1.84,B=log_2(2+\sqrt 3)\approx 1.9,C=ln(3\pi)\approx 2.24,\,\, given: A<B<C$
let $f(x)=-2\leq 2\cos(e^x)\leq 2,g(x)=\dfrac {2^x+2^{-x}}{2}\geq 1$
for $g(x)$ is symmetric we only have to discuss $1\leq g(x)\leq2,\,\, or (\,\, -2\leq x\leq 2)$
some values for $-2\leq x\leq 2$ as bellow:
[TABLE="width: 274"]
[TR]
[TD="width: 194, bgcolor: transparent"]g(0)=1
[/TD]
[TD="width: 170, bgcolor: transparent"]f(0)≒1.08
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(0.5)≒1.06
[/TD]
[TD="bgcolor: transparent"]f(0.5)≒-0.16
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(1)=-1.82
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.7)≒1.78
[/TD]
[TD="bgcolor: transparent"]f(1.7)≒1.38
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.84)≒1.93
[/TD]
[TD="bgcolor: transparent"]f(1.84)≒2
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.9)≒2
[/TD]
[TD="bgcolor: transparent"]f(1.9)≒1.84
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(2)≒0.9
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(-1)≒1.87
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(-2)=1.98
[/TD]
[/TR]
[/TABLE]

from the above table we see there are four roots to the given equation
$0<root1<0.5$
$1.7<root2<1.84$
$1.84<root3<1.9$
$-2<root4<-1$
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K