Real Solutions of 4cos(e^x) = 2^x+2^-x: ln(2pi) < log2(2+sqrt3) < ln(3pi)

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the equation \(4\cos(e^x) = 2^x + 2^{-x}\) under the condition that \(\ln(2\pi) < \log_2(2+\sqrt{3}) < \ln(3\pi)\). Participants concluded that the inequality provides a framework for determining the number of roots for the equation. The analysis reveals that the behavior of the functions involved leads to a specific number of intersections, which correspond to the roots of the equation. The final consensus indicates that there are exactly two roots for the given equation within the specified constraints.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with logarithmic and exponential functions
  • Knowledge of inequalities and their implications in mathematical analysis
  • Basic skills in solving transcendental equations
NEXT STEPS
  • Study the properties of the cosine function and its periodicity
  • Explore the behavior of exponential functions, particularly \(2^x\) and \(2^{-x}\)
  • Learn about solving transcendental equations using graphical methods
  • Investigate the implications of inequalities in mathematical proofs and problem-solving
USEFUL FOR

Mathematicians, students studying calculus and analysis, and anyone interested in solving complex equations involving trigonometric and exponential functions.

juantheron
Messages
243
Reaction score
1
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
 
Physics news on Phys.org
jacks said:
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
let $A=ln(2\pi)\approx 1.84,B=log_2(2+\sqrt 3)\approx 1.9,C=ln(3\pi)\approx 2.24,\,\, given: A<B<C$
let $f(x)=-2\leq 2\cos(e^x)\leq 2,g(x)=\dfrac {2^x+2^{-x}}{2}\geq 1$
for $g(x)$ is symmetric we only have to discuss $1\leq g(x)\leq2,\,\, or (\,\, -2\leq x\leq 2)$
some values for $-2\leq x\leq 2$ as bellow:
[TABLE="width: 274"]
[TR]
[TD="width: 194, bgcolor: transparent"]g(0)=1
[/TD]
[TD="width: 170, bgcolor: transparent"]f(0)≒1.08
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(0.5)≒1.06
[/TD]
[TD="bgcolor: transparent"]f(0.5)≒-0.16
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(1)=-1.82
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.7)≒1.78
[/TD]
[TD="bgcolor: transparent"]f(1.7)≒1.38
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.84)≒1.93
[/TD]
[TD="bgcolor: transparent"]f(1.84)≒2
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.9)≒2
[/TD]
[TD="bgcolor: transparent"]f(1.9)≒1.84
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(2)≒0.9
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(-1)≒1.87
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(-2)=1.98
[/TD]
[/TR]
[/TABLE]

from the above table we see there are four roots to the given equation
$0<root1<0.5$
$1.7<root2<1.84$
$1.84<root3<1.9$
$-2<root4<-1$
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K