MHB Real Solutions of 4cos(e^x) = 2^x+2^-x: ln(2pi) < log2(2+sqrt3) < ln(3pi)

  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
The discussion focuses on finding the number of roots for the equation 4cos(e^x) = 2^x + 2^(-x) under the condition that ln(2π) < log2(2 + √3) < ln(3π). Participants analyze the implications of this inequality on the behavior of both sides of the equation. The relationship between the functions involved suggests that the number of intersections, or roots, can be determined by examining their properties and graphs. The conversation emphasizes the importance of understanding logarithmic and trigonometric functions in solving such equations. Ultimately, the goal is to establish the exact count of real solutions based on the given logarithmic condition.
juantheron
Messages
243
Reaction score
1
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
 
Mathematics news on Phys.org
jacks said:
If $\ln(2\pi)<\log_2(2+\sqrt{3})<\ln(3\pi)$, then find number of roots of the equation $$4\cos(e^x)=2^x+2^{-x}$$
let $A=ln(2\pi)\approx 1.84,B=log_2(2+\sqrt 3)\approx 1.9,C=ln(3\pi)\approx 2.24,\,\, given: A<B<C$
let $f(x)=-2\leq 2\cos(e^x)\leq 2,g(x)=\dfrac {2^x+2^{-x}}{2}\geq 1$
for $g(x)$ is symmetric we only have to discuss $1\leq g(x)\leq2,\,\, or (\,\, -2\leq x\leq 2)$
some values for $-2\leq x\leq 2$ as bellow:
[TABLE="width: 274"]
[TR]
[TD="width: 194, bgcolor: transparent"]g(0)=1
[/TD]
[TD="width: 170, bgcolor: transparent"]f(0)≒1.08
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(0.5)≒1.06
[/TD]
[TD="bgcolor: transparent"]f(0.5)≒-0.16
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(1)=-1.82
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.7)≒1.78
[/TD]
[TD="bgcolor: transparent"]f(1.7)≒1.38
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.84)≒1.93
[/TD]
[TD="bgcolor: transparent"]f(1.84)≒2
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(1.9)≒2
[/TD]
[TD="bgcolor: transparent"]f(1.9)≒1.84
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(2)≒0.9
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-1)≒1.25
[/TD]
[TD="bgcolor: transparent"]f(-1)≒1.87
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]g(-2)≒2.13
[/TD]
[TD="bgcolor: transparent"]f(-2)=1.98
[/TD]
[/TR]
[/TABLE]

from the above table we see there are four roots to the given equation
$0<root1<0.5$
$1.7<root2<1.84$
$1.84<root3<1.9$
$-2<root4<-1$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K