MHB Real Solutions to x^4+y^4+z^4 = 4xyz-1

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The equation x^4 + y^4 + z^4 = 4xyz - 1 can be rewritten as x^4 + y^4 + z^4 + 1 = 4xyz. Analyzing the positivity of the left side indicates that either all variables are positive or one is positive with the others negative. The AM-GM inequality demonstrates that the only positive solution occurs when x = y = z = 1. Consequently, the complete set of solutions includes (1, 1, 1), (1, -1, -1), (-1, 1, -1), and (-1, -1, 1). The discussion concludes with appreciation for the elegant solution provided.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all real solutions to the equation:

$x^4+y^4+z^4 = 4xyz-1$.
 
Mathematics news on Phys.org
lfdahl said:
Find all real solutions to the equation:

$x^4+y^4+z^4 = 4xyz-1$.
[sp]
Write the equation as $x^4+y^4+z^4 + 1 = 4xyz.$ The left side is positive, so either all three of $x,y,z$ are positive or one of them is positive and the other two are negative. If there is a solution with only one of them positive, then by changing the signs of the other two we get a solution with all three variables positive. Therefore it is enough in the first place to look for solutions where $x,y,z$ are all positive. Then, using the AM-GM inequality, we get $$4xyz = 4\frac{x^4+y^4+z^4 + 1}4 \geqslant 4\sqrt[4]{x^4y^4z^41^4} = 4xyz,$$ with equality only if $x=y=z=1$. Therefore that is the only positive solution. The only other solutions are obtained be changing the signs of two of the variables.

Thus there are altogether four solutions, namely $(x,y,z) = (1,1,1),\ (1,-1,-1),\ (-1,1,-1),\ (-1,-1,1).$

[/sp]
 
Opalg said:
[sp]
Write the equation as $x^4+y^4+z^4 + 1 = 4xyz.$ The left side is positive, so either all three of $x,y,z$ are positive or one of them is positive and the other two are negative. If there is a solution with only one of them positive, then by changing the signs of the other two we get a solution with all three variables positive. Therefore it is enough in the first place to look for solutions where $x,y,z$ are all positive. Then, using the AM-GM inequality, we get $$4xyz = 4\frac{x^4+y^4+z^4 + 1}4 \geqslant 4\sqrt[4]{x^4y^4z^41^4} = 4xyz,$$ with equality only if $x=y=z=1$. Therefore that is the only positive solution. The only other solutions are obtained be changing the signs of two of the variables.

Thus there are altogether four solutions, namely $(x,y,z) = (1,1,1),\ (1,-1,-1),\ (-1,1,-1),\ (-1,-1,1).$

[/sp]

Thankyou, Opalg, for your participation and for the elegant solution!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top