A Real vs complex spherical harmonics for hexagonal symmetry

Junaidjami
Messages
2
Reaction score
0
TL;DR Summary
Orbital analysis of magnetic anisotropy energy using second order perturbation theory for hexagonal symmetry
1684995728053.png

Are real spherical harmonics better than complex spherical harmonics for hexagonal symmetry, which are
directly associated to a finite Lz?
 
Physics news on Phys.org
An eigenvector of ##L_z## in position representation is a standard complex spherical harmonic, i.e.,
$$\text{Y}_{lm}=P_{lm}[\cos(\vartheta)] \exp(\mathrm{i} m \varphi).$$
Note that in spherical coordinates the position representation of ##\hat{L}_z## reads
$$\hat{L}_z=-\mathrm{i} \hbar \partial_{\varphi}.$$
 
vanhees71 said:
An eigenvector of ##L_z## in position representation is a standard complex spherical harmonic, i.e.,
$$\text{Y}_{lm}=P_{lm}[\cos(\vartheta)] \exp(\mathrm{i} m \varphi).$$
Note that in spherical coordinates the position representation of ##\hat{L}_z## reads
$$\hat{L}_z=-\mathrm{i} \hbar \partial_{\varphi}.$$

vanhees71 said:
Is there any relation between the crystal symmetry and real/complex spherical harmonics? And is there a way to judge the superiority of one over the other?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top