Recurrence Relations - Determining a solution of the recurrence relation

Click For Summary
SUMMARY

The discussion focuses on solving the recurrence relation an = 8an-1 - 16an-2 and determining whether specific sequences are solutions. The user struggles particularly with sequences involving n, specifically an = 2n, an = 4n, and an = n4n. The consensus is that an = 4n satisfies the relation, while an = 2n does not. Key insights include the importance of correctly applying properties of exponents in the calculations.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with properties of exponents
  • Basic algebraic manipulation skills
  • Knowledge of sequences and series
NEXT STEPS
  • Review properties of exponents in depth
  • Study methods for solving linear recurrence relations
  • Explore generating functions for sequences
  • Learn about characteristic equations in recurrence relations
USEFUL FOR

Students and educators in mathematics, particularly those studying discrete mathematics or algorithm analysis, as well as anyone interested in solving recurrence relations.

bigpunz04
Messages
4
Reaction score
0
Hello -

I am having a tough time understanding the problems in the attached picture (Problem 13). My issue is understanding how I plug in the proposed solutions, specifically those that include n. I am able to solve A and B but unable to solve the rest.

For instance, how do I plug in C or D into the original question? What do I do with the original sub values (n-1) and (n-2) ?

Here is the problem:

"Is the sequence {an} a solution of the recurrence relation
an = 8an-1 - 16an-2 if:"

a) an = 0?
b) an = 1?
c) an = 2n?
d) an = 4n?
e) an = n4n?

My approach to question c

8(2n-1) -16(2n-2)
which I believe gives me...
= 16n-1 - 32n-2

But that answer is obviously wrong. So I'm thinking that I am not plugging the solutions that include n properly. Ugghh so frustrated.
 
Last edited:
Physics news on Phys.org
an = 8an-1 - 16an-2

(c)
8(2n-1) -16(2n-2)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)
 
skeeter said:
(c)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)

Thank you! That definitely gives me an idea and I will now brush up on my laws of exponents. Haven't used it in a while.

Looking at the answers in the back of the book, #c is not a solution for {an} since it is not equal to 2n. It also mentions that #d is a solution since 4n satisfies the equation. However, when I work the equation the same manner as you did, I end of with 0. It should end up with 4n in order to satisfy the equation.

Here is how I worked the problem. You'll notice that I am stuck again.

=8(4n-1) - 16(4n-2)
=23(4n-1) - 24(4n-2)
=23(22+n-1) - 24(22+n-2)
=0
 
Last edited:
8(4n-1) - 16(4n-2)



$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents
 
skeeter said:
$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents


I think you are right about reviewing exponential properties. Thank you so much.

Last question...

What happened to the +1 where you wrote 22n+1−22n ?

Thanks again, my friend. I now know exactly where I'm lacking and what I need to review.
 
$2^{2n+1} - 2^{2n}$

$2^{2n} \cdot 2^1 - 2^{2n}$

the two terms above have the common factor $2^{2n}$ ...

$\color{red}{2^{2n}}$ $\cdot 2 - $ $\color{red}{2^{2n}}$

... factor it out from the two terms

$\color{red}{2^{2n}}$ $(2 - 1)$

$2^{2n} (1) = 2^{2n} = 4^n$
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K