MHB Recurrence Relations - Determining a solution of the recurrence relation

bigpunz04
Messages
4
Reaction score
0
Hello -

I am having a tough time understanding the problems in the attached picture (Problem 13). My issue is understanding how I plug in the proposed solutions, specifically those that include n. I am able to solve A and B but unable to solve the rest.

For instance, how do I plug in C or D into the original question? What do I do with the original sub values (n-1) and (n-2) ?

Here is the problem:

"Is the sequence {an} a solution of the recurrence relation
an = 8an-1 - 16an-2 if:"

a) an = 0?
b) an = 1?
c) an = 2n?
d) an = 4n?
e) an = n4n?

My approach to question c

8(2n-1) -16(2n-2)
which I believe gives me...
= 16n-1 - 32n-2

But that answer is obviously wrong. So I'm thinking that I am not plugging the solutions that include n properly. Ugghh so frustrated.
 
Last edited:
Physics news on Phys.org
an = 8an-1 - 16an-2

(c)
8(2n-1) -16(2n-2)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)
 
skeeter said:
(c)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)

Thank you! That definitely gives me an idea and I will now brush up on my laws of exponents. Haven't used it in a while.

Looking at the answers in the back of the book, #c is not a solution for {an} since it is not equal to 2n. It also mentions that #d is a solution since 4n satisfies the equation. However, when I work the equation the same manner as you did, I end of with 0. It should end up with 4n in order to satisfy the equation.

Here is how I worked the problem. You'll notice that I am stuck again.

=8(4n-1) - 16(4n-2)
=23(4n-1) - 24(4n-2)
=23(22+n-1) - 24(22+n-2)
=0
 
Last edited:
8(4n-1) - 16(4n-2)



$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents
 
skeeter said:
$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents


I think you are right about reviewing exponential properties. Thank you so much.

Last question...

What happened to the +1 where you wrote 22n+1−22n ?

Thanks again, my friend. I now know exactly where I'm lacking and what I need to review.
 
$2^{2n+1} - 2^{2n}$

$2^{2n} \cdot 2^1 - 2^{2n}$

the two terms above have the common factor $2^{2n}$ ...

$\color{red}{2^{2n}}$ $\cdot 2 - $ $\color{red}{2^{2n}}$

... factor it out from the two terms

$\color{red}{2^{2n}}$ $(2 - 1)$

$2^{2n} (1) = 2^{2n} = 4^n$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
18
Views
2K
Replies
13
Views
1K
Replies
22
Views
5K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
4
Views
4K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top