MHB Recurrence Relations - Determining a solution of the recurrence relation

Click For Summary
The discussion revolves around solving the recurrence relation an = 8an-1 - 16an-2, specifically for proposed solutions involving n, such as an = 2n and an = 4n. The user struggles with plugging in these solutions correctly, particularly how to handle the original sub-values (n-1) and (n-2). It is clarified that for an = 4n, the calculations lead to the correct result, confirming it as a valid solution, while an = 2n does not satisfy the equation. The conversation emphasizes the importance of reviewing properties of exponents to correctly approach these types of problems.
bigpunz04
Messages
4
Reaction score
0
Hello -

I am having a tough time understanding the problems in the attached picture (Problem 13). My issue is understanding how I plug in the proposed solutions, specifically those that include n. I am able to solve A and B but unable to solve the rest.

For instance, how do I plug in C or D into the original question? What do I do with the original sub values (n-1) and (n-2) ?

Here is the problem:

"Is the sequence {an} a solution of the recurrence relation
an = 8an-1 - 16an-2 if:"

a) an = 0?
b) an = 1?
c) an = 2n?
d) an = 4n?
e) an = n4n?

My approach to question c

8(2n-1) -16(2n-2)
which I believe gives me...
= 16n-1 - 32n-2

But that answer is obviously wrong. So I'm thinking that I am not plugging the solutions that include n properly. Ugghh so frustrated.
 
Last edited:
Physics news on Phys.org
an = 8an-1 - 16an-2

(c)
8(2n-1) -16(2n-2)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)
 
skeeter said:
(c)

note that $2^a(2^b) = 2^{a+b}$ ...

$2^3(2^{n-1}) - 2^4(2^{n-2})$

$2^{n+2} - 2^{n+2} = 0$

use the same property of exponents for (d)

Thank you! That definitely gives me an idea and I will now brush up on my laws of exponents. Haven't used it in a while.

Looking at the answers in the back of the book, #c is not a solution for {an} since it is not equal to 2n. It also mentions that #d is a solution since 4n satisfies the equation. However, when I work the equation the same manner as you did, I end of with 0. It should end up with 4n in order to satisfy the equation.

Here is how I worked the problem. You'll notice that I am stuck again.

=8(4n-1) - 16(4n-2)
=23(4n-1) - 24(4n-2)
=23(22+n-1) - 24(22+n-2)
=0
 
Last edited:
8(4n-1) - 16(4n-2)



$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents
 
skeeter said:
$2^3[(2^2)^{n-1}] - 2^4[(2^2)^{n-2}]$

$2^3[2^{2n-2}] - 2^4[2^{2n-4}]$

$2^{2n+1} - 2^{2n}$

$2^{2n}(2 - 1) = 2^{2n}$

recommend you review properties of exponents


I think you are right about reviewing exponential properties. Thank you so much.

Last question...

What happened to the +1 where you wrote 22n+1−22n ?

Thanks again, my friend. I now know exactly where I'm lacking and what I need to review.
 
$2^{2n+1} - 2^{2n}$

$2^{2n} \cdot 2^1 - 2^{2n}$

the two terms above have the common factor $2^{2n}$ ...

$\color{red}{2^{2n}}$ $\cdot 2 - $ $\color{red}{2^{2n}}$

... factor it out from the two terms

$\color{red}{2^{2n}}$ $(2 - 1)$

$2^{2n} (1) = 2^{2n} = 4^n$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads

Replies
18
Views
3K
Replies
13
Views
1K
Replies
22
Views
5K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
4
Views
4K
Replies
2
Views
2K
Replies
1
Views
2K