Regarding mixing time of a Markov chain

Click For Summary
SUMMARY

This discussion focuses on the mixing time of a Markov chain, specifically analyzing the probability that two independent copies of the chain differ at the first step given distinct initial states. The transition matrix \( P \) is central to the analysis, with the total variation distance \( \|\mu_0P - \nu_0P\|_{TV} \) serving as a key metric. The participants conclude that the inequality \( P[X_1 \neq Y_1 | X_0 = x_0, Y_0 = y_0] \geq d_{TV}(X_1, Y_1) \) holds, particularly in cases of maximal coupling. However, it is noted that the original statement to be proven does not hold for random walks on large complete graphs.

PREREQUISITES
  • Understanding of Markov chains and their properties
  • Familiarity with transition matrices and total variation distance
  • Knowledge of coupling methods in probability theory
  • Basic concepts of probability distributions and Dirac masses
NEXT STEPS
  • Study the properties of total variation distance in Markov chains
  • Learn about coupling techniques and their applications in probability
  • Explore the implications of mixing times in finite state Markov chains
  • Investigate the behavior of random walks on complete graphs
USEFUL FOR

Mathematicians, statisticians, and data scientists interested in Markov chain theory, particularly those working on probabilistic models and their convergence properties.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $X=X_0, X_1, X_2, \ldots$ be a Markov chain on a finite state space $S$, and let $P$ denote the transition matrix.
Assume that there is an $\varepsilon>0$ such that whenever $\mu_0$ and $\nu_o$ are point distributions on $S$ (in other words, $\mu_0$ and $\nu_0$ are Direac masses) we have
$$\|\mu_0P-\nu_0P\|_{TV}\leq \varepsilon$$

Now let $Y=Y_0, Y_1, Y_2, \ldots$ be an independent copy of $X$.

Question. What can we say about the magnitude of $P[X_1\neq Y_1|X_0=x_0, Y_0=y_0]$, where $x_0$ and $y_0$ are two different states in $S$.

I intuitively think that we should be above to bound the above quantity by $\varepsilon$ up to multiplication by an absolute constant. But I am unable to prove it.

We have that
$$P[X_1\neq Y_1|X_0=x_0, Y_0=y_0] = \sum_{x\in S}\sum_{y\in S, y\neq x}P[X_1=x, Y_1=y|X_0=x_0, Y_0=y_0]$$
which is equal to
$$\sum_{x\in S} p(x_0, x)(1-p(y_0, x))$$
but I am unable to make progress.
 
Physics news on Phys.org
Really a standard exercise/result for countable state random variables (with emphasis on markov chains) is to show, where, for notational reasons it is understood in your particular case that $X_0 = 0 $ and $Y_0 = 0$

$P[X_1\neq Y_1|X_0=x_0, Y_0=y_0] = P[X_1\neq Y_1] \geq d_{TV}(X_1,Y_1)= \|\mu_0P-\nu_0P\|_{TV}$
with $\mu := \mathbf e_0$ $\nu := \mathbf e_0$

and the inequality is reached with equality in the case of a maximal coupling. This is somewhat trivial here but useful for other couplings e.g. if $\nu_0$ was the steady state vector.

(nit: there are couple different formulations of total variation distance I am using the 1/2 L1 norm of difference between probability vectors interpretation for countable state r.v.v)

the inequality you're trying to prove 'points in the wrong way' so to speak. More context / background information is needed to make sense of what you're trying to do. E.g. if you don't know what coupling, that is a big deal and my post won't make any sense.
 
steep said:
Really a standard exercise/result for countable state random variables (with emphasis on markov chains) is to show, where, for notational reasons it is understood in your particular case that $X_0 = 0 $ and $Y_0 = 0$

$P[X_1\neq Y_1|X_0=x_0, Y_0=y_0] = P[X_1\neq Y_1] \geq d_{TV}(X_1,Y_1)= \|\mu_0P-\nu_0P\|_{TV}$
with $\mu := \mathbf e_0$ $\nu := \mathbf e_0$

and the inequality is reached with equality in the case of a maximal coupling. This is somewhat trivial here but useful for other couplings e.g. if $\nu_0$ was the steady state vector.

(nit: there are couple different formulations of total variation distance I am using the 1/2 L1 norm of difference between probability vectors interpretation for countable state r.v.v)

the inequality you're trying to prove 'points in the wrong way' so to speak. More context / background information is needed to make sense of what you're trying to do. E.g. if you don't know what coupling, that is a big deal and my post won't make any sense.

I realize now that the statement I want to prove does not hold for the random walk on a big complete graph.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
26
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
7
Views
4K