Relating Linear and Angular Kinematics

Click For Summary

Homework Help Overview

The discussion revolves around the relationship between linear and angular kinematics, specifically in the context of a compact disc (CD) and its operation within a CD player. Participants explore concepts such as angular speed, linear speed, and angular acceleration, while addressing the implications of constant linear velocity on acceleration.

Discussion Character

  • Conceptual clarification, Assumption checking, Exploratory

Approaches and Questions Raised

  • Participants discuss the calculations for angular speed at different radii of the CD and the relationship between linear and angular velocities. Questions arise regarding the nature of acceleration when linear velocity is constant, particularly in the context of uniform circular motion.

Discussion Status

The discussion is active, with participants providing calculations and questioning the implications of their findings. Some guidance is offered regarding the relationship between radius and angular velocity, and the need for inverse proportionality in maintaining constant linear speed.

Contextual Notes

Participants note that the radius of the track is not constant as the CD plays, which affects the angular velocity and acceleration. The homework context includes specific constraints regarding the maximum playing time and the physical properties of the CD.

Fernando Rios
Messages
96
Reaction score
10
Homework Statement
A compact disc (CD) stores music in a coded pattern of tiny pits m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. a) What is the angular speed of theCDwhen scanning the innermost part of the track? The outermost part of the track? b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were
stretched out in a straight line? c) What is the average angular acceleration of a maximum-duration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.
Relevant Equations
v = r*omega
v = d/t
alpha = (omega_f - omega_0)/t
a) We use the definition of linear speed in terms of angular speed:
v = r*omega

omega_f = v/r = (1.25 m/s)/(0.025 m) = 50 rad/s

omega_0 = v/r = (1.25 m/s)/(0.025 m) = 21.55 rad/s

b) We use the definition of linear speed:
v = d/t

d = vt = (1.25m/s)(74 min)(60 s/1 min) = 5.55 km

c) We use the definition of average angular acceleration:
alpha = (omega_f - omega_0)/t = (50 rad/s- 21.55 rad/s)/(74 min)(1 min/60 s) = 0.00641 rad/s^2

The answers are correct. I just wonder, why if a = r*alpha and alpha has a numerical value, a is still equal to zero (there is constant linear velocity)?
 
Physics news on Phys.org
Fernando Rios said:
Homework Statement:: A compact disc (CD) stores music in a coded pattern of tiny pits m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. a) What is the angular speed of theCDwhen scanning the innermost part of the track? The outermost part of the track? b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were
stretched out in a straight line? c) What is the average angular acceleration of a maximum-duration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.
Relevant Equations:: v = r*omega
v = d/t
alpha = (omega_f - omega_0)/t

why if a = r*alpha
This is only true if r is constant. In your case, r is not constant.
 
As v must be kept constant for proper reading, and v = r*omega, the angular velocity (omega or amount of angle swept each second) and the radius must keep an inverse proportion.

As r increases, the machine needs to slow the rotation down, in order to keep the condition of constant velocity of reading.
For the same reason, as r decreases, the machine needs to speed the rotation up.

Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/rotq.html#avel

:)
 
Fernando Rios said:
The answers are correct. I just wonder, why if a = r*alpha and alpha has a numerical value, a is still equal to zero (there is constant linear velocity)?
Think about the case of uniform circular motion. Do you have constant linear velocity? Note that for uniform circular motion ##a=v^2/r##.
 

Similar threads

Replies
23
Views
1K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
18
Views
7K