MHB Can you explain how the law of logic was used to reach this conclusion?

Click For Summary
SUMMARY

The discussion focuses on analyzing two mathematical relations defined by specific conditions: (a) x R y if and only if x - y ≤ 3, and (b) x R y if and only if y / x ∈ J, where x and y belong to the sets J and N, respectively. The first relation is established as reflexive but neither symmetric, anti-symmetric, nor transitive, thus categorizing it as neither an equivalence nor a partial order relation. The second relation's properties were not explicitly analyzed in the provided content, but the logical reasoning applied to the first relation demonstrates the use of logical laws to derive conclusions about relational properties.

PREREQUISITES
  • Understanding of set theory and graph theory
  • Familiarity with relational properties: reflexive, irreflexive, symmetric, anti-symmetric, transitive
  • Basic knowledge of mathematical inequalities
  • Concept of equivalence relations and partial order relations
NEXT STEPS
  • Study the properties of equivalence relations in depth
  • Learn about partial order relations and their characteristics
  • Explore examples of relational properties using matrices
  • Investigate logical laws used in mathematical reasoning, such as modus ponens and modus tollens
USEFUL FOR

Students and educators in mathematics, particularly those studying set theory, graph theory, and relational algebra, as well as anyone seeking to deepen their understanding of logical reasoning in mathematical contexts.

CH1203
Messages
1
Reaction score
0
New to set and graph theory and need help on how to approach these exercise questions:

For each of the following relations, state whether the relation is:
i) reflexive
ii) irreflexive
iii) symmetric
iv) anti-symmetric
v) transitive

Also state whether the relation is an equivalence or partial order relation. Give your reasoning.
a) x R y, if and only if x - y ≤ 3, where x and y $$\in$$ J
b) x R y, if and only if y / x $$\in$$ J, where x and y $$\in$$ N

I understand reflexive, irreflexive, symmetric, anti-symmetric and transitive, but I don't know how to work this out as I have only seen examples with matrixes which are visual...
 
Physics news on Phys.org
Re: HELP - Relations - State whether the relation is an equivalence or partial order relation

Consider the relation a). We have the following:

  • A relation R is reflexive if for all x it holds that xRx.

    We have that $x-x=0\leq 3\Rightarrow xRx$. So, the relation is reflexive.
  • A relation R is irreflexive if for no element x it holds that xRx.

    Since we have shown that the relation is reflexive, it cannot be irreflexive.
  • A relation R is symmetric if for all x,y, xRy implies yRx.

    The relation is not symmetric, take for example $x=-5$ and $y=1$, then $x-y=-5-1=-6\leq 3$, but $y-x=1-(-5)=1+5=6\nleqslant 3$.
  • A relation R is anti-symmetric if for all x,y, xRy and yRx implies $x=y$.

    Suppose that $x-y\leq 3$ and $y-x\leq 3$. These two inequalities hold for example when $x=1$ and $y=-2$:

    We have that $1-(-2)=1+2=3\leq 3$ and $-2-1=-3\leq 3$. So, if these inequalities hold it doesn't necessarily imply that $x=y$, so the relation is not anti-symmetric.
  • A relation R is transitive if for all x,y,z, xRy and yRz implies xRz.

    Since xRy and yRz , we have that $x-y\leq 3$ and $y-z\leq 3$. Take for example $x=3, y=0, z=-3$. Then $x-z = 3-(-3)=3+3=6\nleqslant 3$.

    So, the relation is not transitive.
Partial orders and equivalence relations are both reflexive and transitive, but only equivalence relations are symmetric, while partial orders are anti-symmetric.

We have shown that the above relation is only reflexive. So, this relation is neither an equivalence nor a partial order relation
 
Re: HELP - Relations - State whether the relation is an equivalence or partial order relation

mathmari said:
Consider the relation a). We have the following:

  • A relation R is reflexive if for all x it holds that xRx.

    We have that $x-x=0\leq 3\Rightarrow xRx$. So, the relation is reflexive.
  • A relation R is irreflexive if for no element x it holds that xRx.

    Since we have shown that the relation is reflexive, it cannot be irreflexive.
  • A relation R is symmetric if for all x,y, xRy implies yRx.

    The relation is not symmetric, take for example $x=-5$ and $y=1$, then $x-y=-5-1=-6\leq 3$, but $y-x=1-(-5)=1+5=6\nleqslant 3$.
  • A relation R is anti-symmetric if for all x,y, xRy and yRx implies $x=y$.

    Suppose that $x-y\leq 3$ and $y-x\leq 3$. These two inequalities hold for example when $x=1$ and $y=-2$:

    We have that $1-(-2)=1+2=3\leq 3$ and $-2-1=-3\leq 3$. So, if these inequalities hold it doesn't necessarily mply that $x=y$, so the relation is not anti-symmetric imply that $x=y$, so the relation is not anti-symmetric.
  • A relation R is transitive if for all x,y,z, xRy and yRz implies xRz.

    Since xRy and yRz , we have that $x-y\leq 3$ and $y-z\leq 3$. Take for example $x=3, y=0, z=-3$. Then $x-z = 3-(-3)=3+3=6\nleqslant 3$.

    So, the relation is not transitive.
Partial orders and equivalence relations are both reflexive and transitive, but only equivalence relations are symmetric, while partial orders are anti-symmetric.

We have shown that the above relation is only reflexive. So, this relation is neither an equivalence nor a partial order relation
mathmari said:
So, if these inequalities hold it doesn't necessarily imply that $x=y$, so the relation is not anti-symmetric imply that $x=y$, so the relation is not anti-symmetric.

Which law of logic allow you to come to such a conclusion??
 
Re: HELP - Relations - State whether the relation is an equivalence or partial order relation

solakis said:
Which law of logic allow you to come to such a conclusion??
The examples he gave just before that sentence:
"We have that 1−(−2)=1+2=3≤3 and −2−1=−3≤3."
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K