Remainder of $\dfrac {19^{81}+19^{49}+19^{25}+19^9+19}{19^3-19}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Remainder
Albert1
Messages
1,221
Reaction score
0
please find the remainder
$\dfrac {19^{81}+19^{49}+19^{25}+19^9+19}{19^3-19}$
 
Mathematics news on Phys.org
we have denominator= $19*(19^2-1)$

numerator
= $19*(19^{80} + 19^{48} + 19^{24} + 19^{8} + 1)$
= $19*((19^{80} - 1) + 1 + (19^{48} -1) + 1+ (19^{24}- 1) + 1 + (19^{8}-1) +1 + 1)$
= $19*((19^{80} - 1) + (19^{48} -1) + (19^{24}- 1) + (19^{8}-1) + 5)$
so numarator mod denominator
= 5 * 19 = 95

as $19^{2n}-1$ is divisible by $19^2 - 1$

so remainder = 95
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
Replies
9
Views
2K