Jul 18, 2014 #1 Albert1 Messages 1,221 Reaction score 0 please find the remainder $\dfrac {19^{81}+19^{49}+19^{25}+19^9+19}{19^3-19}$
Jul 18, 2014 #2 kaliprasad Gold Member MHB Messages 1,333 Reaction score 0 Spoiler we have denominator= $19*(19^2-1)$ numerator = $19*(19^{80} + 19^{48} + 19^{24} + 19^{8} + 1)$ = $19*((19^{80} - 1) + 1 + (19^{48} -1) + 1+ (19^{24}- 1) + 1 + (19^{8}-1) +1 + 1)$ = $19*((19^{80} - 1) + (19^{48} -1) + (19^{24}- 1) + (19^{8}-1) + 5)$ so numarator mod denominator = 5 * 19 = 95 as $19^{2n}-1$ is divisible by $19^2 - 1$ so remainder = 95
Spoiler we have denominator= $19*(19^2-1)$ numerator = $19*(19^{80} + 19^{48} + 19^{24} + 19^{8} + 1)$ = $19*((19^{80} - 1) + 1 + (19^{48} -1) + 1+ (19^{24}- 1) + 1 + (19^{8}-1) +1 + 1)$ = $19*((19^{80} - 1) + (19^{48} -1) + (19^{24}- 1) + (19^{8}-1) + 5)$ so numarator mod denominator = 5 * 19 = 95 as $19^{2n}-1$ is divisible by $19^2 - 1$ so remainder = 95