Renormalization Conditions of QED

Click For Summary
SUMMARY

This discussion focuses on the renormalization conditions of Quantum Electrodynamics (QED), specifically addressing the electric charge renormalization. The Lagrangian is defined as $$\mathscr{L}_{QED}=\mathscr{L}_{physical}+\mathscr{L}_{counterterms}$$, with counterterms $$\delta_k$$ determined by renormalization conditions. The main inquiry revolves around whether on-shell conditions for electron momenta are necessary to determine the value of $$\delta_1$$, given that existing calculations assume on-shell electrons. The discussion emphasizes the importance of gauge invariance and references the Ward identity, which relates $$\delta_1$$ and $$\delta_2$$.

PREREQUISITES
  • Understanding of Quantum Electrodynamics (QED)
  • Familiarity with Lagrangian formalism in quantum field theory
  • Knowledge of renormalization techniques, including dimensional regularization
  • Awareness of the Ward identity and its implications for gauge invariance
NEXT STEPS
  • Study the mass-independent $$\overline{\text{MS}}$$ renormalization scheme
  • Explore the "on-shell" renormalization scheme in detail
  • Investigate the implications of the Ward identity on counterterms in QED
  • Review the historical context and calculations of the electron's magnetic moment, particularly Schwinger's contributions
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, researchers studying QED, and students seeking to understand the intricacies of renormalization conditions and their applications in particle physics.

Gaussian97
Homework Helper
Messages
683
Reaction score
412
TL;DR
What is exactly the renormalization condition for the QED vertex?
Hello, I'm studying the renormalization of QED. I have the Lagrangian
$$\mathscr{L}_{QED}=\mathscr{L}_{physical}+\mathscr{L}_{counterterms}$$
where
$$\mathscr{L}_{physical}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\bar{\psi}(i\gamma^\mu\partial_\mu - m)\psi - e \bar{\psi}\gamma^\mu\psi A_\mu$$
$$\mathscr{L}_{counterterms}=-\frac{1}{4}\delta_3 F_{\mu\nu}F^{\mu\nu}+\bar{\psi}(i\delta_2\gamma^\mu\partial_\mu - \delta_m)\psi - e \delta_1\bar{\psi}\gamma^\mu\psi A_\mu$$

with ##\delta_k## the counterterms, fixed by the renormalization conditions.

I don't have problems with the mass and field-strengths renormalization conditions, my problem is with the condition for the electric charge renormalization.
If ##-ie\Gamma^\mu(p', p)## is the amplitude for the 1PI vertex diagrams with ##p'## and ##p## the electron momenta, the renormalization condition is usually stated by imposing that, when the photon is on-shell (##q^2=0##) then this amplitude must reduce to ##\Gamma^\mu = \gamma^\mu##.

My question is: In general, the momenta of the electrons in the vertex don't need to be on-shell, right? Then, do I need to impose on-shell electrons to determine the value of ##\delta_1##? Because, if I understand this properly, ##\delta_1## should be independent of ##p## and ##p'## and I don't see how this is possible if I don't fix them.

My question arises because all the calculations that I've seen assume on-shell electrons, and I don't understand if:
1- By definition ##\Gamma^\mu## must have on-shell electrons or
2- The renormalization condition imposes on-shell electrons in addition to the on-shell photon.

Thank you very much!
 
Physics news on Phys.org
Since QED is renormalizable in the Dyson sense the counter terms necessary to renormalize the theory look precisely as the ones in the original Lagrangian. If you use dim. reg. and minimal subtraction this will be automatically fulfilled and you also don't run into trouble with introducing additional IR problem when using a "physical renormalization scheme". Also note that there's a Ward identity, implying ##\delta_1=\delta_2##. This is important, because it's necessary to keep the counter-term Lagrangian gauge invariant as it must be.

Of course, the finite part of the vertex renormalization leads to important additional terms as the contribution to the magnetic moment of the electron, which was one of the early radiative-correction calculations (first done by Schwinger) in agreement with experiment.
 
vanhees71 said:
Since QED is renormalizable in the Dyson sense the counter terms necessary to renormalize the theory look precisely as the ones in the original Lagrangian. If you use dim. reg. and minimal subtraction this will be automatically fulfilled and you also don't run into trouble with introducing additional IR problem when using a "physical renormalization scheme". Also note that there's a Ward identity, implying ##\delta_1=\delta_2##. This is important, because it's necessary to keep the counter-term Lagrangian gauge invariant as it must be.

Of course, the finite part of the vertex renormalization leads to important additional terms as the contribution to the magnetic moment of the electron, which was one of the early radiative-correction calculations (first done by Schwinger) in agreement with experiment.
Ok thanks, but I'm not sure how to extract the answer to my question from here, can you be a little more specific?
 
For a nice discussion of renormalization of QED (and also QCD), see

https://arxiv.org/abs/hep-ph/0508242

There both the mass-independent ##\overline{\text{MS}}## renormalization scheme as well as the socalled "on-shell" renormalization scheme are described in detail.
 
  • Like
Likes   Reactions: dextercioby

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K