MHB Resurrecting a previous post. Coprime mod n implies coprime-ish mod n.

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
AI Thread Summary
The discussion centers on the mathematical relationship between integers a and b under modular arithmetic, specifically when they are coprime mod n. It explores whether integers a', b', p', and q' can be found such that a'p' + b'q' = 1, given that ap + bq ≡ 1 mod n. The response confirms that if gcd(a, b) = 1, then such integers exist, but raises questions about the scenario when gcd(a, b) ≠ 1. It is noted that if gcd(a, b) divides γ, it leads to a contradiction since it would imply gcd(a, b) = 1, which is not a given condition. The thread seeks further insights on the implications of non-coprime integers in this context.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
This was a question posted a long time ago by Swlabr but somehow the thread died.
Let $a$ and $b$ be two integers such that there exists integers $p$, $q$ with $ap+bq=1\text{ mod }n$. Do there exist integers $a^{\prime}$ $b^{\prime}$, $p^{\prime}$ and $q^{\prime}$ such that, $x^{\prime}=x\text{ mod }n$ for $x\in\{a, b, p, q\}$ and, $$a^{\prime}p^{\prime}+b^{\prime}q^{\prime}=1?$$.This was my response.
If $\gcd (a,b)=1$ then yes.

$ap+bq \equiv 1 \mod n$ means there exist integer $\gamma$ such that $ap + bq+n \gamma =1$ . If $\gcd (a, b)=1$ then $\exists k_1, k_2$ such that

$ak_1+bk_2=\gamma$.

Take $a{'} =a, b{'}=b, p{'}=p+nk_1, q{'}=q+nk_2$

Then $a{'}b{'} +b{'}q{'}=1$

I am not sure what happens when $\gcd (a,b) \neq 1$.

Ideas anyone?

The original thread is http://www.mathhelpboards.com/f15/coprime-mod-%24n%24-implies-coprime-ish-mod-%24n%24-624/#post3495
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: ressurecting a previous post. Coprime mod $n$ implies coprime-ish mod $n$.

Here's what I think,
From $ap + bq+n \gamma =1$, it's evident that $(a,b)$ is coprime to $\gamma$. Then I look for solutions in the form $p'=p+nx$,$q'=q+ny$, so if we want $ap'+bq'=1$ we are led to $ax+by=\gamma$, which has a solution.
 
Re: ressurecting a previous post. Coprime mod $n$ implies coprime-ish mod $n$.

melese said:
Here's what I think,
From $ap + bq+n \gamma =1$, it's evident that $(a,b)$ is coprime to $\gamma$. Then I look for solutions in the form $p'=p+nx$,$q'=q+ny$, so if we want $ap'+bq'=1$ we are led to $ax+by=\gamma$, which has a solution.
Hey melese! You have helped me a lot at MHF(I used abhishekkgp as my nick there). Thanks for showing interest in this thread.

Now, from what I understand you use the fact that $ax+by=\gamma$ has a solution. Ok.. I'll assume, for the moment, that it does. Write $g=\gcd(a,b)$. This would mean that $g| \gamma$. But from $ap+bq+n\gamma=1$ we'd have $g|1$ as $g$ divides $a,b$ and $\gamma$. This would force that $\gcd(a,b)=1$ which is not a necessity in the hypothesis.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top