Graduate Rigorous transition from discrete to continuous basis

Click For Summary
The discussion focuses on the mathematical transition from a discrete to a continuous basis in Hilbert spaces, specifically through the use of complete sets of states. The user seeks a rigorous method to demonstrate this transition without simply replacing sums with integrals. Recommendations are made to study Rigged Hilbert Spaces and distribution theory, emphasizing their importance for understanding advanced concepts in functional analysis and quantum mechanics. The complexity of the topic is acknowledged, noting that it has challenged prominent mathematicians historically. Overall, the conversation highlights the necessity of foundational knowledge in distribution theory and functional analysis for tackling these advanced mathematical concepts.
Alex Cros
Messages
28
Reaction score
1
Hi all,

I'm trying to find a mathematical way of showing that given a complete set $$\left |a_i\right \rangle_{i=1}^{i=dim(H)}∈H$$ together with the usual property of $$\left |\psi\right \rangle = ∑_i \left \langle a_i\right|\left |\psi\right \rangle\left |a_i\right \rangle ∀ \left |\psi\right \rangle∈H$$. Now, by letting the set $$\left | a_i \right \rangle_{i=1}^{i=dim(H)} → \left |a_i\right \rangle_{i=1}^{i=∞}$$ and $$\left |a_{i+1}\right \rangle = \left |a_i\right \rangle+\left |δ\right \rangle$$ as $$ δ→0$$ (in the sense of $$\left |a_{i+1}\right \rangle∈Neighborhood(\left |a_i\right \rangle)$$) we should obtain the familiar expression $$\left |\psi\right \rangle = ∫ da \left \langle a\right|\left |\psi\right \rangle\left |a\right \rangle ∀ \left |\psi\right \rangle∈H$$.
How could this be linked in a rigorous way without the usual "for the continuous case replace sum by integral".
Thanks in advance!

PD: Sorry for the latex form, writing in physics forums can be daunting without any packages...
 
Physics news on Phys.org
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
 
  • Like
Likes Alex Cros
bhobba said:
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
Thank you so much man, that really helps and now my summer is going to be way more interesting!
 
  • Like
Likes bhobba
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K