Rigorous transition from discrete to continuous basis

  • #1
28
1
Hi all,

I'm trying to find a mathematical way of showing that given a complete set $$\left |a_i\right \rangle_{i=1}^{i=dim(H)}∈H$$ together with the usual property of $$\left |\psi\right \rangle = ∑_i \left \langle a_i\right|\left |\psi\right \rangle\left |a_i\right \rangle ∀ \left |\psi\right \rangle∈H$$. Now, by letting the set $$\left | a_i \right \rangle_{i=1}^{i=dim(H)} → \left |a_i\right \rangle_{i=1}^{i=∞}$$ and $$\left |a_{i+1}\right \rangle = \left |a_i\right \rangle+\left |δ\right \rangle$$ as $$ δ→0$$ (in the sense of $$\left |a_{i+1}\right \rangle∈Neighborhood(\left |a_i\right \rangle)$$) we should obtain the familiar expression $$\left |\psi\right \rangle = ∫ da \left \langle a\right|\left |\psi\right \rangle\left |a\right \rangle ∀ \left |\psi\right \rangle∈H$$.
How could this be linked in a rigorous way without the usual "for the continuous case replace sum by integral".
Thanks in advance!!!

PD: Sorry for the latex form, writing in physics forums can be daunting without any packages...
 

Answers and Replies

  • #2
10,008
3,102
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
 
  • #3
28
1
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
Thank you so much man, that really helps and now my summer is going to be way more interesting!!
 

Related Threads on Rigorous transition from discrete to continuous basis

Replies
4
Views
5K
  • Last Post
10
Replies
246
Views
40K
Replies
2
Views
4K
Replies
7
Views
2K
Replies
7
Views
2K
Replies
12
Views
1K
Replies
2
Views
215
  • Last Post
Replies
11
Views
3K
Replies
16
Views
6K
  • Last Post
Replies
3
Views
4K
Top