ConradDJ said:
...
There are two big problems with this. One is that we’ve been used to the notion of a given, absolute reality for well over 2,000 years. So it still seems more plausible to many of us to imagine spacetime as a new “ether” that exists in itself with a certain intrinsic (though twisty and maybe superposed) metric. The other problem is that describing how measurements are actually made and how information is actually communicated requires a different kind of analysis from what we’re used to, because every kind of information can only be defined in a context of other kinds of information.
...
The two problems you mention are not AFAICS problems with the theory, they are difficulties experienced by those "many of us" whose expectations are conditioned by past history and who are "not used to" the math tools or kind of analysis. They don't hurt the theory, just slow down its acceptance.
In a sense this is why I find the quantum theory of geometry interesting. It necessarily involves new (manifoldless) geometry, fundamentally new mathematics not just more and more elaborate (manifoldy) differential geometry. That it also slows down the rate at which awareness percolates into the physics community at large is not necessarily bad! The theory (and its application to cosmology) have changed substantially in the past 5 years. There are advantages to gradual seepage into the "market".
One big obstacle to understanding I've noticed is that many people have not gotten used to the 1986 Ashtekar introduction of connection rather than metric representation of geometry. So they don't see spinnetworks as a natural construct. Connection means parallel transport.
Geometry can be described by how stuff parallel transports along loops---a network is just a generalization of a loop. So a network can be a function defined on the connections. Like a quantum state or wave function defined on the configurations of a simpler system.
The spin network is a natural math object to serve as a state of geometry.
But it only seems natural after the Ashtekar "new variables" of 1986.
While we are on the subject of drawbacks, I should mention those I see:
1. the theory could be
wrong.
Every application of LQG to cosmology seems to predict a bounce---a pre-bang contraction phase. That should show up. If it doesn't then the theory is wrong. Also concentric circles like Penrose thinks he sees should NOT show up. If they are really there, not just random coincidence mirage patterns, then AFAICS the theory is wrong.
2. the theory is still evolving rapidly. 2010 was a year of enormous changes---Rovelli posted 15 papers, that gives some indication. But so also were 2008 and 2009. Being in flux probably makes it harder for newcomers to understand, you have to work a little to keep up.
3. no one has done a Greene-ish popularization. As far as I know there is no popular book that gives a reasonably accurate layman's notion of what LQG is, e.g. how spinfoam dynamics gives transition amplitudes between initial and final quantum states of geometry.
the idea of a quantum state of geometry (the spin network) is potentially fairly intuitive---an abstraction corresponding to the finite set of geometric measurements available to us---what we know and can say about current geometry, or the geometric conditions surrounding an experiment
the idea of a transition amplitude based on a kind of path integral average over all the ways of getting from initial to final---that could also be intuitive.
but there is no layman's introduction that discusses those things. that I know of. No "Brian Greene" treatment.
That's why I always list the three (very hard, but well written) survey papers Rovelli wrote this year. They are truthful and fairly complete, they communicate, but not at lay-level. They are not introductions in that sense. They are introductions at the advanced PhD student and postdoc level---people wanting into the research community. I list them because they are all I know to mention that is truthful. It's tough.
Anyway here are the references again:
April 1780
http://arxiv.org/abs/1004.1780
October 1939
December 4707