Eluki said:
Hi,
I am havinga bit of challenge with the following question.
What seems confusing to me is th relationship between hypothesis 1 and 2.
I will appreciate all help.
View attachment 9403
proof:
1) $\forall x(P(x)\vee Q(x)$
2)$\forall x( \neg Q(x)\vee S(x))$
3)$\forall x (R(x)\rightarrow\neg S(x))$
4)$\exists x(\neg P(x))$
5) $(P(x)\vee Q(x)$.......from one and using universal elimination UE
6)$ \neg Q(x)\vee S(x)$..........from two UE
7)$ R(x)\rightarrow\neg S(x)$..........from (3),UE
6)$(\neg P(y))$...............hypothesis for existential elimination EE
7)$\neg(P(x)\rightarrow Q(x)$..........(5) using material implication
8).$ \neg\neg Q(x)\rightarrow S(x)$.........(6) using material imlication
9)$Q(x)$...................hypothesis for conditional proof
10)$\neg Q(x)$................hypothesis for contradiction
11)$Q(x)\wedge\neg Q(x)$..............(9)and (10) using AI (addition introdaction)
12)$\neg\neg Q(x)$.................(10)to (11) contradiction
13)$S(x)$....................(8),(12) using Modus Ponens(MP)
14)$Q(x)\rightarrow S(x)$.........from (9) to(13) and using conditional proof
15)$\neg P(x)$.............hypothesis for conditional proof
16) $Q(x)$................using (15), (7) and MP
17)$S(x)$................using (14) and (16) and MP
18)Repeat process from steps (10) to (12) to end up with $\neg\neg S(x)$
19)$\neg\neg S(x)\rightarrow\neg R(x)$......(7) and using contrapositive
20) $\neg R(x)$.................(18),(19) using MP
21)$\neg P(x)\rightarrow\neg R(x)$.......from (15) to(20) and using conditional proof
22)$\forall x(\neg P(x)\rightarrow\neg R(x))$......from (21) and using universal introduction (UI)
23)$\neg P(y)\rightarrow\neg R(y))$............from(22) and using UE where we put x=y
24)$\neg R(y)$.................. (6),(24) and using MP
25)$\exists x(\neg R(x))$................from (24) and using existensial introduction EI
26) $\exists x(\neg R(x))$................from (4) and (6) to (25) and using EE
As you can see the general plan of the proof is to prove 1st $\forall x(\neg P(y)\rightarrow\neg R(y))$ and then using $\neg P(y)$. to prove $\exists\neg R(x)$ using EI and EE
1) Notice the changing of the variables from x to y and then back to x
Now to test your understanding start your own proof by hypothising $\neg P(x)$
and use my proof as help
You may use different rules of inference if you like