MHB S5.t.5 Find domain and asymptotes.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Domain
Click For Summary
The discussion focuses on finding the domain and asymptotes of the function g(x) = (2x^2 - 14x + 24) / (x^2 + 6x - 40). The domain is all real numbers except x = 4 and x = -10, expressed as x ∈ (-∞, -10) ∪ (-10, 4) ∪ (4, ∞). The horizontal asymptote is determined to be y = 2, while the vertical asymptote occurs at x = -10. There is also a mention of a removable discontinuity at x = 4, although it was not explicitly requested. The discussion touches on the conditions for oblique asymptotes but does not reach a conclusion on their presence.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s5.t.5 Kiaser HS}$
Find domain asymptotes.
$g(x)=\dfrac{2x^2-14x+24}{x^2+6x-40}$
$\begin{array}{rll}
\textsf{factor}&=\dfrac{2(x-3)(x-4)}{(x-4)(x+10)}
=\dfrac{2(x-3)\cancel{(x-4)}}{\cancel{(x-4)}(x+10)}
=\dfrac{2(x-3)}{x+10}\\
\textsf{Domain} & -\infty<-10<\infty\\
HA \quad y&=3 \\
VA \quad x&=-10
\end{array}$
I think there is an oblique asymptote but ??
Also the OP has a hole at $x=4$ but they didn't ask for it ?

btw how come tab does not work here?:confused:
 
Mathematics news on Phys.org
what does $-\infty < -10 < \infty$ mean?
the domain is all reals except x = 4 and x = -10 …
$x \in (-\infty, -10) \cup (-10,4) \cup (4, \infty)$

horizontal asymptote is y = 2

oblique asymptotes occur when the degree of the numerator is one greater than the degree of the denominator

yes, the original rational function has a removable discontinuity at x = 4
 
how do you get y=2 for HA
 
karush said:
how do you get y=2 for HA

$\displaystyle \lim_{x \to \pm \infty} \dfrac{2x^2-14x+24}{x^2+6x-40}$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K