MHB S5.t.5 Find domain and asymptotes.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Domain
AI Thread Summary
The discussion focuses on finding the domain and asymptotes of the function g(x) = (2x^2 - 14x + 24) / (x^2 + 6x - 40). The domain is all real numbers except x = 4 and x = -10, expressed as x ∈ (-∞, -10) ∪ (-10, 4) ∪ (4, ∞). The horizontal asymptote is determined to be y = 2, while the vertical asymptote occurs at x = -10. There is also a mention of a removable discontinuity at x = 4, although it was not explicitly requested. The discussion touches on the conditions for oblique asymptotes but does not reach a conclusion on their presence.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s5.t.5 Kiaser HS}$
Find domain asymptotes.
$g(x)=\dfrac{2x^2-14x+24}{x^2+6x-40}$
$\begin{array}{rll}
\textsf{factor}&=\dfrac{2(x-3)(x-4)}{(x-4)(x+10)}
=\dfrac{2(x-3)\cancel{(x-4)}}{\cancel{(x-4)}(x+10)}
=\dfrac{2(x-3)}{x+10}\\
\textsf{Domain} & -\infty<-10<\infty\\
HA \quad y&=3 \\
VA \quad x&=-10
\end{array}$
I think there is an oblique asymptote but ??
Also the OP has a hole at $x=4$ but they didn't ask for it ?

btw how come tab does not work here?:confused:
 
Mathematics news on Phys.org
what does $-\infty < -10 < \infty$ mean?
the domain is all reals except x = 4 and x = -10 …
$x \in (-\infty, -10) \cup (-10,4) \cup (4, \infty)$

horizontal asymptote is y = 2

oblique asymptotes occur when the degree of the numerator is one greater than the degree of the denominator

yes, the original rational function has a removable discontinuity at x = 4
 
how do you get y=2 for HA
 
karush said:
how do you get y=2 for HA

$\displaystyle \lim_{x \to \pm \infty} \dfrac{2x^2-14x+24}{x^2+6x-40}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
1
Views
996
Back
Top