MHB S5.t.5 Find domain and asymptotes.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Domain
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s5.t.5 Kiaser HS}$
Find domain asymptotes.
$g(x)=\dfrac{2x^2-14x+24}{x^2+6x-40}$
$\begin{array}{rll}
\textsf{factor}&=\dfrac{2(x-3)(x-4)}{(x-4)(x+10)}
=\dfrac{2(x-3)\cancel{(x-4)}}{\cancel{(x-4)}(x+10)}
=\dfrac{2(x-3)}{x+10}\\
\textsf{Domain} & -\infty<-10<\infty\\
HA \quad y&=3 \\
VA \quad x&=-10
\end{array}$
I think there is an oblique asymptote but ??
Also the OP has a hole at $x=4$ but they didn't ask for it ?

btw how come tab does not work here?:confused:
 
Mathematics news on Phys.org
what does $-\infty < -10 < \infty$ mean?
the domain is all reals except x = 4 and x = -10 …
$x \in (-\infty, -10) \cup (-10,4) \cup (4, \infty)$

horizontal asymptote is y = 2

oblique asymptotes occur when the degree of the numerator is one greater than the degree of the denominator

yes, the original rational function has a removable discontinuity at x = 4
 
how do you get y=2 for HA
 
karush said:
how do you get y=2 for HA

$\displaystyle \lim_{x \to \pm \infty} \dfrac{2x^2-14x+24}{x^2+6x-40}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
1
Views
974
Back
Top