MHB Sara's questions at Yahoo Answers regarding permutations and combinations

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

How to solve this question about permutations? How do you get to this answer? 10 pts for best answer! :)?

Please show how you arrived at the answer (I want a detailed process explanation!)
Here's the answer to the first question: 8.88 x 10^ (19)
But how do you arrive at this answer?

Question:
In how many ways can 30 teachers be assigned to 6 schools, with each school receiving an equal number of teachers?And if you're up to the challenge ... :
Q: In how many ways can 12 jurors and 3 alternate jurors be selected from a group of 25 prospective jurors?

Thanks a bunch!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Sara,

1.) Obviously we are going to have to send 5 teachers to each of the 6 schools. There are $30!$ ways to order the 30 teachers, but we have to account for the fact that for each of the 6 groups of 5 teachers, there are 5! ways to order them, and since order does not matter, we find the number of ways $N$ to do this is:

$$N=\frac{30!}{(5!)^6}=88832646059788350720\approx8.88\times10^{19}$$

2.) We need to compute the number of ways to choose 15 from 25, and multiply this with the number of ways to choose 3 from 15, hence:

$$N={25 \choose 15}{15 \choose 3}=1487285800$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
5K
Replies
8
Views
2K
Replies
5
Views
5K
Replies
11
Views
2K
Replies
1
Views
4K
Replies
16
Views
10K
Replies
1
Views
6K
Back
Top