I Scaling Dimension of a Field in CFT

Click For Summary
The discussion focuses on the scaling dimension of a field in conformal field theory (CFT) and the implications of scale transformations on fields. It establishes that under a scale transformation, the field scales as ##\phi'(x') = \lambda^{-\Delta} \phi(x)##, where ##\Delta## represents the scaling dimension, calculated as ##\Delta = \frac{(d-2)}{2}##. The minus sign is crucial to ensure that the action remains invariant and avoids negative dimensions. Questions arise regarding the correctness of the transformation of the action and the treatment of the metric tensor under scaling, highlighting potential confusion in the derivation. Clarifications on these points are sought to solidify understanding of scaling dimensions in CFT.
shinobi20
Messages
277
Reaction score
20
TL;DR
I'm quite unsure about how the scaling dimension of a field is devised. I need clarifications on small details in order to make sure that my concepts are clear.
I'm studying CFT, and I find the lecture notes and books really confusing and devoid of explanations (more details).

In a scale transformation ##x' = \lambda x##, the field ##\phi(x)## should also be affected by the scale transformation, i.e., ##\phi'(x') = \phi'(\lambda x) = \lambda^{-\Delta} \phi(x)##. I think this should mean that we assume that the field should scale but we do not know by how much, and ##\Delta## quantifies this unknown, which is called the scaling dimension. We put a minus sign because when we plug it in the action, this will avoid a negative dimension (see below)?

If the scale transformation is a symmetry of the theory, then the action must be invariant under this. Particularly, in a free theory,

\begin{align*}
S' & = \int d^d x' \partial'_\mu \phi'(x') \partial'^\mu \phi'(x')\\
& = \int d^d x' g^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')\\
& = \int d^d x \Bigg| \frac{\partial x'}{\partial x} \Bigg| \lambda^{-2} g^{\mu \nu} \partial_\mu \phi'(x') \partial_\nu \phi'(x')\\
& = \int d^d x \lambda^d \lambda^{-2} \partial_\mu \phi'(x') \partial^\mu \phi'(x')\\
\end{align*}

Comparing this with ##S = \int d^d x \partial_\mu \phi(x) \partial^\mu \phi(x)##,

\begin{equation*}
\int d^d x \lambda^d \lambda^{-2} \partial_\mu \phi'(x') \partial^\mu \phi'(x') = \int d^d x \partial_\mu \phi(x) \partial^\mu \phi(x)
\end{equation*}

We can infer that,

\begin{equation*}
\lambda^{\frac{d-2}{2}} \phi'(x') = \phi(x), \quad \text{OR} \quad \phi'(x') = \lambda^{\frac{-(d-2)}{2}} \phi(x)
\end{equation*}

So the scaling dimension is ##\Delta = \frac{(d-2)}{2}##. If we were to not put a minus sign from the start, i.e., ##\phi'(\lambda x) = \lambda^{\Delta} \phi(x)##, then ##\Delta = \frac{-(d-2)}{2}##.

Questions:
1. Can anyone verify if what I'm saying (my statements) above are correct?
2. Can anyone explain more about the minus sign?
3. I'm not sure if what I wrote in the second line of the action is correct, i.e., ##\partial'_\mu \phi'(x') \partial'^\mu \phi'(x') = g^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')##. Is this correct or should it be ##\partial'_\mu \phi'(x') \partial'^\mu \phi'(x') = g'^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')##? If this is the case then ##g'^{\mu \nu}## should also transform, but then I would not get the correct scaling dimension.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
851
  • · Replies 1 ·
Replies
1
Views
2K
Replies
24
Views
3K
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K