Scaling Dimension of a Field in CFT

Click For Summary
SUMMARY

The discussion centers on the scaling dimension of a field in Conformal Field Theory (CFT), specifically how the field transforms under scale transformations. The scaling dimension, denoted as ##\Delta = \frac{(d-2)}{2}##, quantifies how the field ##\phi(x)## scales with respect to the transformation ##x' = \lambda x##. The minus sign in the scaling relation ##\phi'(x') = \lambda^{-\Delta} \phi(x)## is crucial to ensure the action remains invariant under scale transformations. Clarifications are sought regarding the correctness of the action's formulation and the implications of the metric tensor's transformation.

PREREQUISITES
  • Understanding of Conformal Field Theory (CFT)
  • Familiarity with scale transformations in physics
  • Knowledge of action principles in field theory
  • Basic concepts of metric tensors and their transformations
NEXT STEPS
  • Study the implications of scale invariance in Conformal Field Theory
  • Research the role of the metric tensor in field transformations
  • Examine the derivation of scaling dimensions in various field theories
  • Learn about the significance of the minus sign in scaling relations
USEFUL FOR

The discussion is beneficial for theoretical physicists, particularly those specializing in Conformal Field Theory, graduate students studying quantum field theory, and researchers exploring scale invariance and its applications in particle physics.

shinobi20
Messages
277
Reaction score
20
TL;DR
I'm quite unsure about how the scaling dimension of a field is devised. I need clarifications on small details in order to make sure that my concepts are clear.
I'm studying CFT, and I find the lecture notes and books really confusing and devoid of explanations (more details).

In a scale transformation ##x' = \lambda x##, the field ##\phi(x)## should also be affected by the scale transformation, i.e., ##\phi'(x') = \phi'(\lambda x) = \lambda^{-\Delta} \phi(x)##. I think this should mean that we assume that the field should scale but we do not know by how much, and ##\Delta## quantifies this unknown, which is called the scaling dimension. We put a minus sign because when we plug it in the action, this will avoid a negative dimension (see below)?

If the scale transformation is a symmetry of the theory, then the action must be invariant under this. Particularly, in a free theory,

\begin{align*}
S' & = \int d^d x' \partial'_\mu \phi'(x') \partial'^\mu \phi'(x')\\
& = \int d^d x' g^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')\\
& = \int d^d x \Bigg| \frac{\partial x'}{\partial x} \Bigg| \lambda^{-2} g^{\mu \nu} \partial_\mu \phi'(x') \partial_\nu \phi'(x')\\
& = \int d^d x \lambda^d \lambda^{-2} \partial_\mu \phi'(x') \partial^\mu \phi'(x')\\
\end{align*}

Comparing this with ##S = \int d^d x \partial_\mu \phi(x) \partial^\mu \phi(x)##,

\begin{equation*}
\int d^d x \lambda^d \lambda^{-2} \partial_\mu \phi'(x') \partial^\mu \phi'(x') = \int d^d x \partial_\mu \phi(x) \partial^\mu \phi(x)
\end{equation*}

We can infer that,

\begin{equation*}
\lambda^{\frac{d-2}{2}} \phi'(x') = \phi(x), \quad \text{OR} \quad \phi'(x') = \lambda^{\frac{-(d-2)}{2}} \phi(x)
\end{equation*}

So the scaling dimension is ##\Delta = \frac{(d-2)}{2}##. If we were to not put a minus sign from the start, i.e., ##\phi'(\lambda x) = \lambda^{\Delta} \phi(x)##, then ##\Delta = \frac{-(d-2)}{2}##.

Questions:
1. Can anyone verify if what I'm saying (my statements) above are correct?
2. Can anyone explain more about the minus sign?
3. I'm not sure if what I wrote in the second line of the action is correct, i.e., ##\partial'_\mu \phi'(x') \partial'^\mu \phi'(x') = g^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')##. Is this correct or should it be ##\partial'_\mu \phi'(x') \partial'^\mu \phi'(x') = g'^{\mu \nu} \partial'_\mu \phi'(x') \partial'_\nu \phi'(x')##? If this is the case then ##g'^{\mu \nu}## should also transform, but then I would not get the correct scaling dimension.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
912
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K