Schouten identity resembles Jacobi identity

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Identity Jacobi
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
Am I the only one who sees the resemblance between these two identities?

Schouten:

<p q> <r s> +<p r> <s q>+ <p s > <q r> =0

Jacobi:

[A,[B,C]]+[C,[A,B]]+[B,[C,A]]=0

In Schouten the p occours in each term in the three terms, so we can regard it as dumby variable, and somehow get a correspondence between these two identities, or the algebraic structures that each identity is used in.

Am I being a cranck here? it's not my intention, as always, just trying to understand.

P.S
I am not sure I understand the proof of Schouten's identity in Srednicki's, I'll try to reread it.
 
Physics news on Phys.org
I had a dream or a thought about your work; any new progress on your work?
 
Well, for one thing, I'm investigating how it relates to BCJ duality.
 
  • Like
Likes Greg Bernhardt
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top