I Separability of a Hamiltonian with spin

  • Thread starter Thread starter Salmone
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
Click For Summary
The Hamiltonian in question, expressed as ##\hat{H}=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2+\frac{A}{\hbar^2}(J^2-L^2-S^2)##, can be separated into two parts: ##H_1## and ##H_2##. The commutator ##[H_1,H_2]## evaluates to zero, indicating that the two parts commute. The calculations show that both the momentum squared and the position squared operators commute with angular momentum and spin operators. Thus, the Hamiltonian is indeed separable into ##H_1 + H_2##. This confirms the separability of the Hamiltonian with respect to the defined components.
Salmone
Messages
101
Reaction score
13
I'd like to know if this Hamiltonian ##\hat{H}=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2+\frac{A}{\hbar^2}(J^2-L^2-S^2)## is separable into two parts ##H_1=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2## and ##H_2=\frac{A}{\hbar^2}(J^2-L^2-S^2)## and ##[H_1,H_2]=0##. Here A is a constant. I did so:

##[H_1,H_2]=[\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2,\frac{A}{\hbar^2}(J^2-L^2-S^2)]=##
##=[\frac{p^2}{2m},\frac{A}{\hbar^2}(J^2-L^2-S^2)]+[\frac{1}{2}m\omega^2r^2,\frac{A}{\hbar^2}(J^2-L^2-S^2)]=##
##=\frac{A}{2m \hbar^2}([p^2,J^2]-[p^2,L^2]-[p^2,S^2])+\frac{a}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])=## ##=\frac{A}{2m \hbar^2}([p^2,L^2]+[p^2,S^2]+2[p^2,L_xS_x]+2[p^2,L_yS_y]+2[p^2,L_zS_z]-[p^2,L_x^2]-[p^2,L_y^2]-[p^2,L_z^2]-## ##-[p^2,S^2])+\frac{A}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])=\frac{A}{2m \hbar^2}([p^2,2L_xS_x]+[p^2,2L_yS_y]+[p^2,2L_zS_z])+\frac{A}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])## now, since ##p^2## is a scalar and it's a function of spatial coordinates, it commutes with the component ##L_i## of the angular moment and with Spin operators and the same can be said about ##r^2## so the first commutator is ##0## and the hamiltonian is separable in ##H_1+H_2##. Am I right?
 
Last edited:
Physics news on Phys.org
That's right!
 
  • Like
Likes Salmone and gentzen
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 1 ·
Replies
1
Views
736
  • · Replies 21 ·
Replies
21
Views
3K
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
853
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K