I Separability of a Hamiltonian with spin

  • I
  • Thread starter Thread starter Salmone
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
Click For Summary
The Hamiltonian in question, expressed as ##\hat{H}=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2+\frac{A}{\hbar^2}(J^2-L^2-S^2)##, can be separated into two parts: ##H_1## and ##H_2##. The commutator ##[H_1,H_2]## evaluates to zero, indicating that the two parts commute. The calculations show that both the momentum squared and the position squared operators commute with angular momentum and spin operators. Thus, the Hamiltonian is indeed separable into ##H_1 + H_2##. This confirms the separability of the Hamiltonian with respect to the defined components.
Salmone
Messages
101
Reaction score
13
I'd like to know if this Hamiltonian ##\hat{H}=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2+\frac{A}{\hbar^2}(J^2-L^2-S^2)## is separable into two parts ##H_1=\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2## and ##H_2=\frac{A}{\hbar^2}(J^2-L^2-S^2)## and ##[H_1,H_2]=0##. Here A is a constant. I did so:

##[H_1,H_2]=[\frac{p^2}{2m}+\frac{1}{2}m\omega^2r^2,\frac{A}{\hbar^2}(J^2-L^2-S^2)]=##
##=[\frac{p^2}{2m},\frac{A}{\hbar^2}(J^2-L^2-S^2)]+[\frac{1}{2}m\omega^2r^2,\frac{A}{\hbar^2}(J^2-L^2-S^2)]=##
##=\frac{A}{2m \hbar^2}([p^2,J^2]-[p^2,L^2]-[p^2,S^2])+\frac{a}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])=## ##=\frac{A}{2m \hbar^2}([p^2,L^2]+[p^2,S^2]+2[p^2,L_xS_x]+2[p^2,L_yS_y]+2[p^2,L_zS_z]-[p^2,L_x^2]-[p^2,L_y^2]-[p^2,L_z^2]-## ##-[p^2,S^2])+\frac{A}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])=\frac{A}{2m \hbar^2}([p^2,2L_xS_x]+[p^2,2L_yS_y]+[p^2,2L_zS_z])+\frac{A}{2 \hbar^2}([r^2,J^2]-[r^2,L^2]-[r^2,S^2])## now, since ##p^2## is a scalar and it's a function of spatial coordinates, it commutes with the component ##L_i## of the angular moment and with Spin operators and the same can be said about ##r^2## so the first commutator is ##0## and the hamiltonian is separable in ##H_1+H_2##. Am I right?
 
Last edited:
Physics news on Phys.org
That's right!
 
  • Like
Likes Salmone and gentzen
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...