I Separation energy of nucleons and Coulomb barrier

Click For Summary
The discussion centers on the separation energy of nucleons, particularly the difference between neutrons and protons in relation to the Coulomb barrier. Neutrons can be emitted more easily from a nucleus because they are not affected by the repulsive Coulomb force that acts on protons. The Coulomb force creates a barrier that makes it harder to separate protons from the nucleus, contrary to the expectation that repulsion would facilitate separation. The professor suggests understanding this phenomenon by considering the time-reversed process, where a proton entering the nucleus encounters a barrier due to energy conservation principles. Ultimately, the stability of isotopes against beta decay is linked to the energy levels of protons and neutrons, with the Coulomb potential determining the energy difference.
ValeForce46
Messages
40
Reaction score
3
TL;DR
Why is a neutron easier to extract than a proton? It should be the other way around because Coulomb force is repulsive and the only attractive force in the nucleus is the strong force.
My professor and the book I'm reading (Particles and Nuclei: An Introduction to the Physical Concepts by Povh et al.) says that "The emitted nucleons are primarily neutrons since they are not hindered by the Coulomb threshold" which means that a neutron has a separation energy lower than a proton. They take this as true, indeed for example when a nucleus decays to another nucleus in an excited state, we compare the energy of this excited level and the separation energy of neutron to check if it's bonded for nucleons' emission (like in the ##\beta##-decay
##^{60}_{27}##Co ##\to## ##^{60}_{28}##Ni).

I still don't get how, although the Coulomb force between protons is repulsive, the existence of this force makes it harder to separate a proton from a nucleus. I'd expect the proton to see something which reduce the confinement inside the well (of the nucleus) but this is not the true, it sees a barrier caused by this force. Instead a neutron doesn't see a barrier because there's no Coulomb force and therefore (I guess?) it's easier to separate.

So, why the Coulomb force, which should facilitate the separation as it's repulsive, makes it harder for a proton to be separated than a neutron?

However, my professor gives an explanation which I really hate (or maybe I don't understand?). She says that to understand this, you have to see the process in time-reverse, which means the proton that "enters" the nucleus and of course it meets a barrier. Then something about conservation of the energy in the reverse process and that's it.
 
Last edited by a moderator:
Physics news on Phys.org
If isotopes are stable against beta decays then p -> n + e+ has to be forbidden. In that reaction we would gain energy from the positron leaving the nucleus, that means the highest filled proton energy level has to be lower than the highest filled neutron energy level, otherwise you would get beta+ decays. How much lower is given by the Coulomb potential.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...