Sequence and Series Terminology

Click For Summary
The discussion focuses on the definition and notation of sequences, clarifying that a sequence can be viewed as a function from natural numbers to real numbers. It questions the conventional representation of sequences and how it relates to function concepts, particularly the nth term. The terms "partial sums," "series," "finite series," and "infinite series" are explored, emphasizing their similarities and differences, especially in terms of summation over defined ranges. The conversation highlights the preference for using integers in defining sequences due to consistency with established definitions. Overall, the dialogue seeks to deepen the understanding of sequence and series terminology in mathematical contexts.
Mr Davis 97
Messages
1,461
Reaction score
44
First, I would like to clear up notation and the definition for sequences. What exactly is a sequence? I read somewhere that it is defined as a function ##f: \mathbb{N} \to \mathbb{R}##. But if this is the case, why do we only define functions based on the range of the function, e.g., ##\left \{ 1, 4, 9, 16... \right \}## (which we regard as "the sequence")? We define sequences with the notation ##\left \{ a_{n} \right \}_{0}^{\infty}## too, but what does this mean in terms of the functions concept? How does this specify a function? In addition, what is the nth term's relation to the function concept, or in other words, what is the analogue of the nth term for sequences in functions? Finally, what exactly to the terms "partial sums, series, finite series, infinite series," mean? It seems as though they are mostly for the same concept.
 
Mathematics news on Phys.org
I like the function definition. The reason we take integers is, honestly, for simplicity. You plug in 1, and you get your first term, you plug in 2, and you get your second term, etc. If you like, I suppose you could do 1/2 integers, and 1/2 would be your first term, 1 would be your second term, etc. You could also do multiples of pi/6. You plug in pi/6 and you get your first term, pi/3 and get your second term, etc. The function would have to be defined accordingly though. IMHO, just stick with the integers, because that is consistent with other definitions. If you were going to define your series to be ##\{ a_n\}_0^\infty\ \text{where}\ a_n := f(n)## and you took n to be something other than integers, what would your pi'th term be? You see how it gets conceptually sketchy there?
Partial sums are when you do a sum over a well defined range, i.e. a finite series. Ex. ##\sum\limits_{k=1}^{10} k## This is a finite series/partial sum. The equivalent infinite series would be ##\sum\limits_{k=1}^{\infty} k = -\frac{1}{12}## ;)
 
BiGyElLoWhAt said:
If you like, I suppose you could do 1/2 integers, and 1/2 would be your first term, 1 would be your second term, etc. You could also do multiples of pi/6. You plug in pi/6 and you get your first term, pi/3 and get your second term, etc. The function would have to be defined accordingly though.

For that concept, see the more general (and more useful) concept of a net.
 
micromass said:
For that concept, see the more general (and more useful) concept of a net.
Very interesting, micro.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
8K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K