MHB Sequence Challenge: Find $a_{61}+a_{63}$

Click For Summary
The sequence is defined with initial values a1=2007, a2=2008, and a3=-2009, and for n>3, the recursive formula is a_n=a_{n-1}-a_{n-2}+a_{n-3}+n. To find a_{61}+a_{63}, the sequence must be computed for the required indices using the recursive definition. Participants discuss the calculations and patterns observed in the sequence. The final goal is to determine the specific values of a_{61} and a_{63} and their sum. The challenge emphasizes the complexity of recursive sequences and their evaluation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A sequence is defined recursively by $a_1=2007$, $a_2=2008$, $a_3=-2009$, and for $n>3$, $a_n=a_{n-1}-a_{n-2}+a_{n-3}+n$.

Find $a_{61}+a_{63}$.
 
Mathematics news on Phys.org
anemone said:
A sequence is defined recursively by $a_1=2007$, $a_2=2008$, $a_3=-2009$, and for $n>3$, $a_n=a_{n-1}-a_{n-2}+a_{n-3}+n$.

Find $a_{61}+a_{63}$.

we have

$a_n+a_{n-2}=a_{n-1} + a_{n-3} + n$

hence
$a_{63}+a_{61}=a_{62} + a_{60} + 63$
= $a_{61} + a_{59} + 62 + 63 $
= $a_{3} + a_{1} +4 \cdots+ 62 + 63 $
= - 2009 + 2007 + 63 * 64/2 - 6= 63 * 32 - 8 = 2008
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K