Set Theory for Beginners: How is A' ⊆ A and its Complement a Subset of A?

Click For Summary
SUMMARY

The discussion centers on the concepts of set theory, specifically the image of a set and the relationship between a set and its complement. The image of a set A' ⊆ A is defined as f(A') = {b | b = f(a) for some a ∈ A'}, where f is a function mapping elements from set A to set B. Additionally, it is established that the complement of set A, when considered within A, is the empty set, which is inherently a subset of A.

PREREQUISITES
  • Understanding of basic set theory concepts, including subsets and complements.
  • Familiarity with functions and their images in mathematical contexts.
  • Knowledge of notation used in set theory, such as f(A) and A'.
  • Basic comprehension of natural numbers and their properties.
NEXT STEPS
  • Study the definition and properties of functions in set theory.
  • Explore the concept of images and pre-images in mathematical functions.
  • Learn about the empty set and its role in set theory.
  • Investigate examples of functions and their images using different sets.
USEFUL FOR

This discussion is beneficial for students beginning their journey in set theory, educators teaching foundational mathematics, and anyone seeking to clarify the concepts of set images and complements.

Romono
Messages
5
Reaction score
0
Could someone please explain how the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}. And how can the complement of A be a subset of A? Forgive my ignorance here, I'm a beginning student of set theory.
 
Physics news on Phys.org
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.
 
Euge said:
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.

Hi Euge,

Thanks for your reply, but maybe I should rephrase my question: Could you explain what "the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}" actually means? Could you break it down? I don't understand what an image of a set is even after reading the definition here.

Also, thanks for answering my second question -- I think I understand that now.
 
Suppose you have function $f : A \to B$. This means that for every $a\in A$, there corresponds a unique $b\in B$ such that $f(a) = b$. Given $a \in A$, the element $f(a) \in B$ is called the image of $a$. Thus, given a subset $A'$ of $A$, $f(A')$ is the set of images $f(a')$, as $a'$ ranges over $A'$.

Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$. How about $f(\{2,3\})$? Since $2$ and $3$ are the only elements of $\{2, 3\}$, $f(\{2, 3\}) = \{f(2), f(3)\} = \{b, c\}$.

Here's another example. Let $\Bbb N$ denote the set of natural numbers. Define $g : \Bbb N \to \Bbb N$ by setting $g(n) = n + 1$ for all $n\in \Bbb N$. Let's find $g(2\Bbb N)$, where $2\Bbb N$ is the set of even natural numbers. Every element of $2\Bbb N$ is of the form $2n$ for some $n\in \Bbb N$. Now $g(2n) = 2n + 1$ for all $n \in \Bbb N$. Thus $g(2\Bbb N)$ consists of all natural numbers of the form $2n + 1$. In other words, $g(2\Bbb N)$ is the set of odd natural numbers.
 
Euge said:
Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$.

Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...
 
Romono said:
Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...

Yes, it is the image of the set $\{1,2\}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K