Set Theory for Beginners: How is A' ⊆ A and its Complement a Subset of A?

Click For Summary

Discussion Overview

The discussion revolves around the concepts of set theory, specifically the image of a set under a function and the relationship between a set and its complement. Participants explore definitions and examples related to these concepts, aiming to clarify their understanding.

Discussion Character

  • Exploratory, Technical explanation, Conceptual clarification

Main Points Raised

  • One participant asks for clarification on how the image of a set A' ⊆ A is defined as f(A') = {b | b = f(a) for some a ∈ A'}.
  • Another participant states that the complement of A (in A) is the empty set, which is a subset of A.
  • A participant seeks further breakdown of the definition of the image of a set, indicating a lack of understanding despite having read the definition.
  • One participant provides examples of functions and their images, illustrating how to determine the image of subsets.
  • Another participant confirms that in the provided example, {a, b} is indeed the image of the set {1, 2}.

Areas of Agreement / Disagreement

Participants generally agree on the definitions provided, but there is no consensus on the deeper implications or understanding of these concepts, as some participants express confusion and seek further clarification.

Contextual Notes

Some participants express uncertainty regarding the definitions and implications of the image of a set and the concept of complements, indicating that their understanding is still developing.

Who May Find This Useful

Beginning students of set theory or those interested in foundational concepts in mathematics may find this discussion helpful.

Romono
Messages
5
Reaction score
0
Could someone please explain how the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}. And how can the complement of A be a subset of A? Forgive my ignorance here, I'm a beginning student of set theory.
 
Physics news on Phys.org
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.
 
Euge said:
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.

Hi Euge,

Thanks for your reply, but maybe I should rephrase my question: Could you explain what "the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}" actually means? Could you break it down? I don't understand what an image of a set is even after reading the definition here.

Also, thanks for answering my second question -- I think I understand that now.
 
Suppose you have function $f : A \to B$. This means that for every $a\in A$, there corresponds a unique $b\in B$ such that $f(a) = b$. Given $a \in A$, the element $f(a) \in B$ is called the image of $a$. Thus, given a subset $A'$ of $A$, $f(A')$ is the set of images $f(a')$, as $a'$ ranges over $A'$.

Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$. How about $f(\{2,3\})$? Since $2$ and $3$ are the only elements of $\{2, 3\}$, $f(\{2, 3\}) = \{f(2), f(3)\} = \{b, c\}$.

Here's another example. Let $\Bbb N$ denote the set of natural numbers. Define $g : \Bbb N \to \Bbb N$ by setting $g(n) = n + 1$ for all $n\in \Bbb N$. Let's find $g(2\Bbb N)$, where $2\Bbb N$ is the set of even natural numbers. Every element of $2\Bbb N$ is of the form $2n$ for some $n\in \Bbb N$. Now $g(2n) = 2n + 1$ for all $n \in \Bbb N$. Thus $g(2\Bbb N)$ consists of all natural numbers of the form $2n + 1$. In other words, $g(2\Bbb N)$ is the set of odd natural numbers.
 
Euge said:
Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$.

Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...
 
Romono said:
Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...

Yes, it is the image of the set $\{1,2\}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K