Set Theory Proofs: A, B, and C - Solving for Set Equality and Complements

Click For Summary

Discussion Overview

The discussion revolves around proving set equalities and properties involving three arbitrary sets A, B, and C. Participants are specifically addressing three proofs related to set intersections, unions, and complements, with a focus on the third proof which remains unresolved.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 outlines the proofs for parts (a) and (b) but expresses confusion regarding part (c).
  • Some participants suggest that to prove set equality, one must demonstrate both inclusions, $B \subseteq C$ and $C \subseteq B$, which may have been implied in earlier arguments.
  • Post 4 proposes using the characteristic function to approach part (c), detailing properties of these functions and how they relate to the hypothesis that $A \cup B \cup C = U$.
  • There is a suggestion that the condition $A \cap B = A \cap C = B \cap C$ is relevant for verifying the proof for part (c).

Areas of Agreement / Disagreement

Participants generally agree on the approaches for parts (a) and (b), but there is no consensus on how to solve part (c), with multiple proposed methods and ongoing uncertainty.

Contextual Notes

The discussion reflects limitations in the clarity of the proofs, particularly for part (c), where assumptions and dependencies on definitions of set operations are not fully resolved.

MikeLandry
Messages
2
Reaction score
0
I have gotten to this point with a and b but do i am totally lost with c. Any help would be much appreciated

Consider any three arbitrary sets A, B and C.
(a) Show that if A ∩ B = A∩ C and A ∪ B = A ∪ C, then B = C.
(b) Show that if A − B = B − A, then A = B.
(c) Show that if A∩B = A∩C = B ∩C and A∪B ∪C = U, then A⊕B ⊕C = U.

For the three proofs so far i have

a) So A intersects C = A intersects B and A union B= A union C.

Let
png.latex
then
png.latex
. Suppose then that
png.latex
then
png.latex
and thus
png.latex
. Contradiction.

Similarly, let
png.latex
then
png.latex
. Suppose that
png.latex
then
png.latex
and so
png.latex
. Contradiction

b)
AB=ABc where Bc is the complement of B.

Now if AB then (x)[xABc or xBAc]for
 
Physics news on Phys.org
Hi MikeLandry,

Welcome to MHB! :)

I think you have the right idea for part one, but I would alter a couple of things. To show two sets, $B$ and $C$ are equal you need to show $B \subseteq C$ and $C \subseteq B$. Put another way $x \in B \implies x \in C$ and $x \in C \implies x \in B$. I think you already showed both of those things by the contrapositive but you didn't write what you showed implies.

Jameson
 
Thank you very much for your quick reply. I feel confident with my solutions for questions a and b but any insite on how to solve part c would be greatly appreciated
 
MikeLandry said:
I feel confident with my solutions for questions a and b but any insite on how to solve part c would be greatly appreciated

An elegant way (but not the only one), is to use the characteristic function. Being $U$ an universal set and $M\subset U$ the characteristic function $1_M:U\to \{0,1\}$ is defined by: $$1_M(x)=\left \{ \begin{matrix} 1 & \mbox{ if }& x\in M \\0 & \mbox{if}& x\not\in M\end{matrix}\right.$$ Using the properties $$\begin{aligned}&M_1=M_2\Leftrightarrow1_{M_1}=1_{M_2}\\&1_{M\cup N}=1_M+1_N-1_M\cdot 1_N\\&1_{M\oplus N}=1_M+1_N-2\cdot1_M\cdot 1_N\end{aligned}$$ and the hypothesis $A\cup B\cup C=U$ (that is, $1_{A\cup B\cup C}=1_U$) you'll easily verify that $A\oplus B\oplus C=U$ iff: $$1_A\cdot 1_B+1_A\cdot 1_C+1_B\cdot 1_C-3\cdot 1_A\cdot 1_B\cdot 1_C=0$$ Now, use the hypothesis $A\cap B=A\cap C=B\cap C$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K